

 ${\sf Saeed} \ {\sf Mahloujifar}^* \qquad {\sf Xiao} \ {\sf Zhang}^*$

David Evans

Adversarial Examples

- Let (\mathcal{X},μ) be the underlying probability space and f^* be the ground-truth classifier.
- Risk:

 $\mathsf{Risk}(f, f^*) = \Pr_{\boldsymbol{x} \in \mathcal{U}} \left[f(\boldsymbol{x}) \neq f^*(\boldsymbol{x}) \right].$

• Adversarial Risk w.r.t ϵ perturbations:

 $\mathsf{AdvRisk}_{\epsilon}(f,f^*) = \Pr_{\boldsymbol{x} \sim \mu} \left[\exists \; \boldsymbol{x}' \in \mathrm{Ball}(\boldsymbol{x},\epsilon) \; \mathsf{s.t.} \; f(\boldsymbol{x}') \neq f^*(\boldsymbol{x}') \right].$

Main Question

What is the minimum possible Adversarial Risk, given that Risk is at least $\alpha?$

 $\min_{\mathcal{E} \subset \mathcal{V}} \mu(\mathcal{E}_{\epsilon}) \quad \text{such that } \mu(\mathcal{E}) \geq \alpha.$

Concentration of measure of nice distributions gives lower bound on adversarial risk:

- Spheres under ℓ_2 (Gilmer et al., 2018)
- Gaussian under ℓ_2 (Fawzi et al., 2018)
- Any product distribution under ℓ_0 (Mahloujifar et al., 2018)

Can we estimate concentration of measure for real world distributions (e.g. MNIST)?

Empirical Framework to Measure Concentration

▶ Challenge 1: We do not know the PDF of the distribution. Our solution: replace the actual distribution μ with empirical distribution $\hat{\mu}$ based on a set of i.i.d. samples S

$$\widehat{\mu}(\mathcal{A})\equiv\sum_{oldsymbol{x}\in\mathcal{S}}\mathbbm{1}_{\mathcal{A}}(oldsymbol{x})/|\mathcal{S}|$$

- Challenge 2: We cannot search through all possible subsets.
 Our solution: limit the search space to a carefully chosen collection of subsets G.
- **Remaining task:** solve the following optimization problem:

$$\underset{\mathcal{E} \subset \mathcal{G}}{\text{minimize}} \quad \widehat{\mu}(\mathcal{E}_{\epsilon}) \quad \text{such that } \widehat{\mu}(\mathcal{E}) \geq \alpha$$

Theoretical Results for ℓ_{∞}

Let \mathcal{G}_T be the collection of subsets specified by complement of union of T hyperrectangles.

Let $\hat{\mu}_T$ be the empirical distribution based on a i.i.d. dataset of size T^4 . Define $c = \min_{\varepsilon \in \mathcal{V}} \ \mu(\mathcal{E}_{\epsilon})$ such that $\mu(\mathcal{E}) \geq \alpha$.

Also define

 $c_T = \min_{\mathcal{E} \in G_T} \widehat{\mu}_T(\mathcal{E}_{\epsilon}) \quad \text{such that } \widehat{\mu}_T(\mathcal{E}) \ge \alpha.$

Main Theorem: With probability 1 over the randomness of training data we have

 $\lim_{T \to \infty} c_T = c.$

Finding Robust Error Region for ℓ_{∞}

- ▶ Sort all the training data using l_1 distance to the *k*-th nearest neighbors.
- Perform kmeans clustering on the top-q densest images.
- ▶ Obtain T hyperrectangular image clusters and expand each of them by ϵ in ℓ_{∞} .
- Treat the complement of union of these hyperrectangles as our error region.

Experimental for ℓ_{∞}

Main experimental results

Table: Summary of the main results using our empirical method under ℓ_∞ perturbations						
Dataset	α	ϵ	T	q	Risk	Adversarial Risk
MNIST	0.01	0.1	5	0.662	$1.23\% \pm 0.12\%$	$3.64\% \pm 0.30\%$
		0.2	10	0.660	$1.11\% \pm 0.10\%$	$5.89\% \pm 0.44\%$
		0.3	10	0.629	$1.15\% \pm 0.13\%$	$7.24\% \pm 0.38\%$
		0.4	10	0.598	$1.21\% \pm 0.09\%$	$9.92\% \pm 0.60\%$
CIFAR-10	0.05	2/255	10	0.680	$5.72\% \pm 0.25\%$	$8.13\% \pm 0.26\%$
		4/255	20	0.688	$6.05\% \pm 0.40\%$	$13.66\% \pm 0.33\%$
		8/255	40	0.734	$5.94\% \pm 0.34\%$	$18.13\% \pm 0.30\%$
		16/255	75	0.719	$5.28\% \pm 0.23\%$	$28.83\% \pm 0.46\%$
SVHN	0.05	0.01	10	0.812	$8.83\% \pm 0.30\%$	$10.17\% \pm 0.29\%$
		0.02	10	0.773	$8.86\% \pm 0.20\%$	$12.46\% \pm 0.15\%$
		0.03	10	0.750	$8.55\% \pm 0.22\%$	$13.82\% \pm 0.25\%$

Implications of our experiments

- > Provide examples of rather robust error regions for real image datasets.
- Suggest the concentration of measure phenomenon is not the sole reason behind vulnerability of the existing classifiers to adversarial examples.
- Suggest the impossibility results, such as Gilmer et al. (2018) and Mahloujifar et al. (2018), should not make the community hopeless in finding more robust image classifiers.