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Abstract

Many recent works have shown that adversarial examples that fool classifiers can be
found by minimally perturbing a normal input. Recent theoretical results, starting
with Gilmer et al. (2018b), show that if the inputs are drawn from a concentrated
metric probability space, then adversarial examples with small perturbation are
inevitable. A concentrated space has the property that any subset with Ω(1) (e.g.,
1/100) measure, according to the imposed distribution, has small distance to almost
all (e.g., 99/100) of the points in the space. It is not clear, however, whether
these theoretical results apply to actual distributions such as images. This paper
presents a method for empirically measuring and bounding the concentration of a
concrete dataset which is proven to converge to the actual concentration. We use
it to empirically estimate the intrinsic robustness to `∞ and `2 perturbations of
several image classification benchmarks. Code for our experiments is available at
https://github.com/xiaozhanguva/Measure-Concentration.

1 Introduction

Despite achieving exceptionally high accuracy on natural inputs, state-of-the-art machine learning
models have been shown to be vulnerable to adversaries who use small perturbations to fool the
classifier (Szegedy et al., 2014; Goodfellow et al., 2015). This phenomenon, known as adversarial
examples, has motivated numerous studies (Papernot et al., 2016; Madry et al., 2018; Biggio & Roli,
2018; Gilmer et al., 2018a) to develop heuristic defenses that aim to improve classifier robustness.
However, most defense mechanisms have been quickly broken by adaptive attacks (Carlini & Wagner,
2017; Athalye et al., 2018). Although certification methods (Raghunathan et al., 2018; Wong &
Kolter, 2018; Sinha et al., 2018; Wong et al., 2018; Gowal et al., 2019; Wang et al., 2018; Zhang
et al., 2019) have been proposed aiming to end such arms race and continuous efforts have been
made to develop better robust models, both the robustness guarantees and efficiency achieved by
state-of-the-art robust classifiers are far from satisfying.

This motivates a fundamental information-theoretic question: what are the inherent limitations
of developing robust classifiers? Several recent works (Gilmer et al., 2018b; Fawzi et al., 2018;
Mahloujifar et al., 2019; Shafahi et al., 2019; Bhagoji et al., 2019) have shown that under certain
assumptions regarding the data distribution and the perturbation metric, adversarial examples are
theoretically inevitable. As a result, for a broad set of theoretically natural metric probability spaces
of inputs, there is no classifier for the data distribution that achieves adversarial robustness. For
example, Gilmer et al. (2018b) assumed that the input data are sampled uniformly from n-spheres and
proved a model-independent theoretical bound connecting the risk to the average Euclidean distance
to the “caps” (i.e., round regions on a sphere). Mahloujifar et al. (2019) generalized this result to any
concentrated metric probability space of inputs and showed, for example, that if the inputs come from
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any Normal Lévy family (Lévy, 1951), any classifier with a noticable test error will be vulnerable to
small (i.e., sublinear in the typical norm of the inputs) perturbations.

Although such theoretical findings seem discouraging to the goal of developing robust classifiers,
all these impossibility results depend on assumptions about data distributions that might not hold
for cases of interest. Our work develops a general method for testing properties of concrete datasets
against these theoretical assumptions.

Contributions. Our work shrinks the gap between theoretical analyses of robustness of classification
for theoretical data distributions and understanding the intrinsic robustness of actual datasets. Indeed,
quantitative estimates of the intrinsic robustness2 of benchmark image datasets such as MNIST and
CIFAR-10 can provide us with a better understanding of the threat of adversarial examples for natural
image distributions and may suggest promising directions for further improving classifier robustness.
Our main technical contribution is a general method to evaluate the concentration of a given input
distribution µ based on a set of data samples. We prove that by simultaneously increasing the sample
size m and a complexity parameter T , the concentration of the empirical measure converges to the
actual concentration of µ (Section 3). Using this method, we perform experiments to demonstrate
the existence of robust error regions for benchmark datasets under both `∞ and `2 perturbations
(Section 4). Compared with state-of-the-art robustly trained models, our estimated intrinsic robustness
shows that, for most settings, there exists a large gap between the robust error achieved by the best
current models and the theoretical limits implied by concentration. This suggests the concentration
of measure is not the only reason behind the vulnerability of existing classifiers to adversarial
perturbations. Thus, either there is room for improving the robustness of image classifiers (even with
non-zero classification error) or a need for deeper understanding of the reasons for the gap between
intrinsic robustness and the actual robustness achieved by robust models, at least for the datasets like
the image classification benchmarks used in our experiments.

Related Work. We are aware of only one previous work that attempts to heuristically estimate these
properties. To extend their theoretical impossibility result to the practical distributions, Gilmer et al.
(2018b) studied MNIST dataset to find a region that is somewhat robust in terms of the expected
`2 distance of other images from the region. In their setting, they showed the existence of a set of
measure 0.01 with average `2 distance 6.59 to all points. In comparison, our work is the first to
provide a general methodology to empirically estimate the concentration of measure with provable
guarantees. Moreover, we are able to deal with `∞, and worst-case bounded perturbations for
modeling adversarial risk, which is the most popular setting for research in adversarial examples.
In addition, another related concurrent work (Bhagoji et al., 2019) studied lower bounds on the
adversarial risk using optimal transport on the metric probability space of instances. They also
measure the optimal transport on the empirical distributions but do not characterize the relationship
between the optimal transport of empirical datasets and the actual one of the underlying distributions.

Another related line of work estimated lower bounds on the concentration of measure of the underlying
distribution through simulating distributions by generative models. Fawzi et al. (2018) proved a lower
bound on the concentration of the generated image distribution, assuming the underlying generative
model has Gaussian latent space and small Lipschitz constant. Krusinga et al. (2019) estimated
an upper bound on the density function of the distribution using generative model, then proved
concentration inequalities based on upper bounds on the density function. Our work is distinct from
these works, because we directly learn the concentration function instead of a lower bound, and we
use the actual data samples instead of samples generated from some trained generative model.

The work of Tsipras et al. (2019) studied the trade-off between robustness and accuracy. They show
that for some specific learning problems, achieving robustness and accuracy together is not possible.
At first glance, it might seem that this trade-off contradicts the existing lower bounds that come from
concentration of measure. However, there is no contradiction and what is proved there is with regard
to a different definition of adversarial examples. The definition of adversarial examples used there
could diverge from our definition in some learning problems (see Diochnos et al. (2018)), but they
coincide in the cases that the ground truth function is robust to small perturbations.

2See Definition 2.2 for the formal definition of intrinsic robustness. The term robustness has been used with
different meanings in previous works (e.g., in Diochnos et al. (2018), it refers to the average distances to the
error region). However, all such uses refer to a desirable property of the classifier in being resilient to adversarial
perturbations, which is the case here as well. See Diochnos et al. (2018) for a taxonomy of different definitions.
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Notation. Lowercase boldface letters such as x are used to denote vectors, and [n] is used to
represent {1, 2, . . . , n}. For any setA, let Pow(A), |A| and 1A(·) be the set of measurable subsets of
A, cardinality and indicator function of A, respectively. For any x ∈ Rn, the `∞-norm and `2-norm
of x are defined as ‖x‖∞ = maxi∈[n] |xi| and ‖x‖2 = (

∑
i∈[n] x

2
i )

1/2 respectively. Let (X , µ) be a
probability space and d : X × X → R be some distance metric defined on X . Define the empirical
measure with respect to a set S sampled from µ as µ̂S(A) =

∑
x∈S 1A(x)/|S|,∀A ⊆ X . Let

Ball(x, ε) = {x′ ∈ X : d(x′,x) ≤ ε} be the ball around x with radius ε. For any subset A ⊆ X ,
define the ε-expansion Aε = {x ∈ X : ∃ x′ ∈ Ball(x, ε) ∩ A}. The collection of the ε-expansions
for members of any G ⊆ Pow(X ) is defined and denoted as Gε = {Aε : A ∈ G}.

2 Robustness and Concentration of Measure

In this paper, we work with the following definition of adversarial risk:
Definition 2.1 (Adversarial Risk). Let (X , µ) be the probability space of instances and f∗ be the
underlying ground-truth. The adversarial risk of a classifier f in metric d with strength ε is defined as

AdvRiskε(f, f
∗) = Pr

x←µ

[
∃ x′ ∈ Ball(x, ε) s.t. f(x′) 6= f∗(x′)

]
.3

For ε = 0, which allows no perturbation, the notion of adversarial risk coincides with traditional risk.
Definition 2.2 (Intrinsic Robustness). Consider the same setting as in Definition 2.1. Let F be some
family of classifiers, then the intrinsic robustness is defined as the maximum adversarial robustness
that can be achieved within F , namely

Robε(F , f∗) = 1− inf
f∈F

{
AdvRiskε(f, f

∗)
}
.

In this work, we specify F as the family of imperfect classifiers that have risk at least α ∈ (0, 1).

Previous work shows a connection between concentration of measure and the intrinsic robustness
with respect to some families of classifiers (Gilmer et al. (2018b); Fawzi et al. (2018); Mahloujifar
et al. (2019); Shafahi et al. (2019)). The concentration of measure on a metric probability space is
defined by a concentration function as follows.
Definition 2.3 (Concentration Function). Consider a metric probability space (X , µ, d). Suppose
ε > 0 and α ∈ (0, 1) are given parameters, then the concentration function of the probability measure
µ with respect to ε, α is defined as

h(µ, α, ε) = inf
E∈Pow(X )

{µ(Eε) : µ(E) ≥ α} .

Note that the standard notion of concentration function (e.g., see Talagrand (1995)) is related to a
special case of Definition 2.3 by fixing α = 1/2.

Generalizing the result of Gilmer et al. (2018b) about instances drawn from spheres, Mahloujifar
et al. (2019) showed that, in general, if the metric probability space of instances is concentrated, then
any classifier with 1% risk incurs large adversarial risk for small amount of perturbations.
Theorem 2.4 (Mahloujifar et al. (2019)). Let (X , µ) be the probability space of instances and f∗ be
the underlying ground-truth. For any classifier f , we have

AdvRiskε(f, f
∗) ≥ h(µ,Risk(f, f∗), ε).

In order for this theorem to be useful, we need to know the concentration function. The behavior of
this function is studied extensively for certain theoretical metric probability spaces (Ledoux, 2001;
Milman & Schechtman, 1986). However, it is not known how to measure the concentration function
for arbitrary metric probability spaces. In this work, we provide a framework to (algorithmically)
bound the concentration function from i.i.d. samples from a distribution. Namely, we want to solve
the following optimization task using our i.i.d. samples:

minimize
E∈Pow(X )

µ(Eε) subject to µ(E) ≥ α. (1)

3Note that bounding lp norm might be restrictive for the adversary (Gilmer et al., 2018a) and this definition
only covers a subset of possible adversaries.
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We aim to estimate the minimum possible adversarial risk, which captures the intrinsic robustness
for classification in terms of the underlying distribution µ, conditioned on the fact that the original
risk is at least α. Note that solving this optimization problem only shows the possibility of existence
of an error region E with certain (small) expansion. This means that there could potentially exist a
classifier with risk at least α and adversarial risk equal to the solution of the optimization problem
of (1). Actually finding such an optimally robust classifier (with error α) using a learning algorithm
might be a much more difficult task or even infeasible. We do not consider that problem in this work.

3 Method for Measuring Concentration

In this section, we present a method to measure the concentration of measure on a metric probability
space using i.i.d. samples. To measure concentration, there are two main challenges:

1. Measuring concentration appears to require knowledge of the density function of the distri-
bution, but we only have a data set sampled from the distribution.

2. Even with the density function, we have to find the best possible subset among all the subsets
of the space, which seems infeasible.

We show how to overcome these challenges and find the actual concentration in the limit by first
empirically simulating the distribution and then narrowing down our search space to a specific
collection of subsets. Our results show that for a carefully chosen family of sets, the set with
minimum expansion can be approximated using polynomially many samples. On the other hand, the
minimum expansion convergence to the actual concentration (without the limits on the sets) as the
complexity of the collection goes to infinity.

Before stating our main theorems, we introduce two useful definitions. The following definition
captures the concentration function for a specific collection of subsets.
Definition 3.1 (Concentration Function for a Collection of Subsets). Consider a metric probability
space (X , µ, d). Let ε > 0 and α ∈ (0, 1) be given parameters, then the concentration function of
the probability measure µ with respect to ε, α and a collection of subsets G ⊆ Pow(X ) is defined as

h(µ, α, ε,G) = inf
E∈G
{µ(Eε) : µ(E) ≥ α} .

When G = Pow(X ), we write h(µ, α, ε) for simplicity.

We also need to define the notion of complexity penalty for a collection of subsets. The complexity
penalty for a collection of subsets captures the rate of the uniform convergence for the subsets in
that collection. One can get such uniform convergence rates using the VC dimension or Rademacher
complexity of the collection.
Definition 3.2 (Complexity Penalty). Let G ⊆ Pow(X ) be a collection of subsets of X . A function
φ : N× R→ [0, 1] is a complexity penalty for G iff for any probability measure µ supported on X
and any δ ∈ [0, 1], we have

Pr
S←µm

[∃ E ∈ G s.t. |µ(E)− µ̂S(E)| ≥ δ] ≤ φ(m, δ).

Theorem 3.3 shows how to overcome the challenge of measuring concentration from finite samples,
when the concentration is defined with respect to specific families of subsets. Namely, it shows that
the empirical concentration is close to the true concentration, if the underlying collection of subsets
is not too complex. The proof of Theorem 3.3 is provided in Appendix A.1.
Theorem 3.3 (Generalization of Concentration). Let (X , µ, d) be a metric probability space and
G ⊆ Pow(X ). For any δ, α, ε ∈ [0, 1], we have

Pr
S←µm

[h(µ, α− δ, ε,G)− δ ≤ h(µ̂S , α, ε,G) ≤ h(µ, α+ δ, ε,G) + δ] ≥ 1− 2
(
φ(m, δ) +φε(m, δ)

)
where φ and φε are complexity penalties for G and Gε respectively.
Remark 3.4. Theorem 3.3 shows that if we narrow down our search to a collection of subsets G
such that both G and Gε have small complexity penalty, then we can use the empirical distribution to
measure concentration of measure for that specific collection. Note that the generalization bound of
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Theorem 3.3 depends on complexity penalties for both G and Gε. Therefore, in order for this theorem
to be useful, the collection G must be chosen in a careful way. For example, if G has bounded VC
dimension, then Gε might still have a very large VC dimension. Alternatively, G might denote the
collection of subsets that are decidable by a neural network of a certain size. In that case, even though
there are well known complexity penalties for such collections (see Neyshabur et al. (2017)), the
complexity of their expansions is unknown. In fact, relating the complexity penalty for expansion of a
collection to that of the original collection is tightly related to generalization bounds in the adversarial
settings, which has also been the subject of several recent works (Cullina et al., 2018; Attias et al.,
2019; Montasser et al., 2019; Yin et al., 2019; Raghunathan et al., 2019).

The following theorem, proved in Appendix A.2, states that if we gradually increase the complexity of
the collection and the number of samples together, the empirical estimate of concentration converges
to actual concentration, as long as several conditions hold. Theorem 3.5 and the techniques used in
its proof are inspired by the work of Scott & Nowak (2006) on learning minimum volume sets.

Theorem 3.5. Let {G(T )}T∈N be a family of subset collections defined over a space X . Let{
φT
}
T∈N and

{
φTε
}
T∈N be two families of complexity penalty functions such that φT and φTε are

complexity penalties for G(T ) and Gε(T ) respectively, for some ε ∈ [0, 1]. Let {m(T )}T∈N and
{δ(T )}T∈N be two sequences such that m(T ) ∈ N and δ(T ) ∈ [0, 1].

Consider a sequence of datasets {ST }T∈N, where ST consists of m(T ) i.i.d. samples from a measure
µ supported on X . Also let α ∈ [0, 1] be such that h is locally continuous w.r.t the second parameter
at point (µ, α, ε,Pow(X )). If all the following hold,

1.
∑∞
T=1 φ

T (m(T ), δ(T )) <∞

2.
∑∞
T=1 φ

T
ε (m(T ), δ(T )) <∞

3. limT→∞ δ(T ) = 0

4. limT→∞ h(µ, α, ε,G(T )) = h(µ, α, ε)

then with probability 1, we have limT→∞ h(µ̂ST
, α, ε,G(T )) = h(µ, α, ε).

Remark 3.6. In Theorem 3.5, the first two conditions restrict the growth rate for the complexity of
the collections. Namely, we need the complexity penalties φT (m(T ), δ(T )) and φTε (m(T ), δ(T )) to
rapidly approach 0 as T → ∞, which means the complexity of G(T ) and Gε(T ) should grow at a
slow rate. The third condition requires that our generalization error goes to zero as we increase T .
Note that the complexity penalty is a decreasing function with respect to δ, which means condition 3
makes achieving the first two conditions harder. However, since the complexity penalty is a function
of both δ and sample size, we can still increase the sample size with a faster rate to satisfy the first two
conditions. Finally, the fourth condition requires our approximation error goes to 0 as we increase T .
Note that this condition holds for any family of collections of subsets that is a universal approximator
(e.g., decision trees or neural networks). However, in order for our theorem to hold, we also need all
the other conditions. In particular, we cannot use decision trees or neural networks as our collection
of subsets, because we do not know if there is a complexity penalty for them that satisfies condition 2.

3.1 Special Case of `∞

In this subsection, we show how to instantiate Theorem 3.5 for the case of `∞. Below, we introduce
a special collection of subsets characterized by the complement of a union of hyperrectangles:

Definition 3.7 (Complement of union of hyperrectangles). For any positive integer T , the collection
of subsets specified by the complement of a union of T n-dimensional hyperrectangles is defined as

CR(T, n) =
{
Rn \ ∪Tt=1Rect(u(t), r(t)) : ∀t ∈ [T ], (u(t), r(t)) ∈ Rn × Rn≥0

}
,

whereRect(u, r) =
{
x ∈ X : ∀j ∈ [n], |xj − uj | ≤ rj/2

}
denotes the hyperrectangle centered at

u with r representing the edge size vector. When n is free of context, we simply write CR(T ).

Recall that our goal is to find a subset E ∈ Rn such that E has measure at least α and the ε∞-expansion
of E under `∞ has the minimum measure. To achieve this goal, we approximate the distribution µ
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with an empirical distribution µ̂S , and limit our search to the special collection CR(T ) (though our
goal is to find the minimum concentration around arbitrary subsets). Namely, what we find is still an
upper bound on the concentration function, and it is an upper bound that we know it converges the
actual value in the limit. Our problem thus becomes the following optimization task:

minimize
E∈CR(T )

µ̂S(Eε∞) subject to µ̂S(E) ≥ α. (2)

The following theorem provides the key to our empirical method by providing a convergence
guarantee. It states that if we increase the number of rectangles and the number of samples together
in a careful way, the solution to the problem using restricted sets converges to the true concentration.
Theorem 3.8. Consider a nice metric probability space (Rn, µ, `∞). Let {ST }T∈N be a family
of datasets such that for all T ∈ N, ST contains at least T 4 i.i.d. samples from µ. For any ε∞
and α ∈ [0, 1], if h is locally continuous w.r.t the second parameter at point (µ, α, ε∞), then with
probability 1 we get

lim
T→∞

h(µ̂ST
, α, ε∞, CR(T )) = h(µ, α, ε∞).

Note that the size of ST is selected as T 4 to guarantee conditions 1 and 2 are satisfied in Theorem
3.5. In fact, we can tune the parameters more carefully to get T 2, instead of T 4, but the convergence
will be slower. See Appendix A.3 for the proof.

3.2 Special Case of `2

This subsection demonstrates how to apply Theorem 3.5 to the case of `2. The following definition
introduces the collection of subsets characterized by a union of balls:
Definition 3.9 (Union of Balls). For any positive integer T , the collection of subsets specified by a
union of T n-dimensional balls is defined as

B(T, n) =
{
∪Tt=1 Ball(u(t), r(t)) : ∀t ∈ [T ], (u(t), r(t)) ∈ Rn × Rn≥0

}
.

When n is free of context, we simply write B(T ).

By restricting our search to the collection of a union of balls B(T ) and replacing the underlying
distribution µ with the empirical one µ̂S , our problem becomes the following optimization task

minimize
E∈B(T )

µ̂S(Eε2) subject to µ̂S(E) ≥ α. (3)

Theorem 3.10, proven in Appendix A.4, guarantees that if we increase the number of balls and
samples together in a careful way, the solution to the empirical problem (3) converges to the true
concentration.
Theorem 3.10. Consider a nice metric probability space (Rn, µ, `2). Let {ST }T∈N be a family
of datasets such that for all T ∈ N, ST contains at least T 4 i.i.d. samples from µ. For any ε2
and α ∈ [0, 1], if h is locally continuous w.r.t the second parameter at point (µ, α, ε2), then with
probability 1 we get

lim
T→∞

h(µ̂ST
, α, ε2,B(T )) = h(µ, α, ε2).

4 Experiments

In this section, we provide heuristic methods to find the best possible error region, which covers at
least α fraction of the samples and its expansion covers the least number of points, for both `∞ and `2
settings. Specifically, we first introduce our algorithm, then evaluate our approach on two benchmark
image datasets: MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky & Hinton, 2009). Note that
in our experiments we exactly use the collection of subsets as suggested by our theoretical results in
the previous section. However, that is not necessary and one might work with any subset collection to
run experiments, as long as they can estimate the measure of the sets and their expansion. We tried
working with other collection of subsets that we do not have theoretical support for (e.g. sets defined
by a neural network) and observed a large generalization gap. This observation shows the importance
of working with subset collections that we can theoretically control their generalization penalty.
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Figure 1: (a) Plots of risk and adversarial risk w.r.t. the resulted error region using our method as q
varies (CIFAR-10, ε∞ = 8/255, T = 30); (b) Plots of adversarial risk w.r.t. the resulted error region
using our method (best q) as T varies on MNIST (ε∞ = 0.3) and CIFAR-10 (ε∞ = 8/255).

4.1 Experiments for `∞

Theorem 3.8 shows that the empirical concentration function h(µ̂S , α, ε∞, CR(T )) converges to the
actual concentration h(µ, α, ε∞) asymptotically, when T and |S| go to infinity with |S| ≥ T 4. Thus,
to measure the concentration of µ, it remains to solve the optimization problem (2).

Method. Although the collection of subsets is specified using simple topology, solving (2) exactly is
still difficult, as the problem itself is combinatorial in nature. Borrowing techniques from clustering,
we propose an empirical method to search for desirable error region within CR(T ). Any error region
E could be used to define fE , i.e., fE(x) = f∗(x), if x /∈ E ; fE(x) 6= f∗(x), if x ∈ E . However,
finding a classifier corresponding to fE using a learning algorithm might be a very difficult task. Here,
we find the optimally robust error region, not the corresponding classifier. A desirable error region
should have small adversarial risk4, compared with all subsets in CR(T ) that have measure at least α.

The high-level intuition is that images from different classes are likely to be concentrated in separable
regions, since it is generally believed that small perturbations preserve the ground-truth class at the
sampled images. Therefore, if we cluster all the images into different clusters, a desired region with
low adversarial risk should exclude any image from the dense clusters, otherwise the expansion of
such a region will quickly cover the whole cluster. In other words, a desirable subset within CR(T )
should be ε∞ away (in `∞ norm) from all the dense image clusters, which motivates our method to
cover the dense image clusters using hyperrectangles and treat the complement of them as error set.

More specifically, our algorithm (for pseudocode, see Algorithm 1 in Appendix B) starts by sorting
all the training images in an ascending order based on the `1-norm distance to the k-th nearest
neighbour with k = 50, and then obtains T hyperrectangular image clusters by performing k-means
clustering (Hartigan & Wong, 1979) on the top-q densest images, where the metric is chosen as `1
and the maximum iterations is set as 30. Finally, we perform a binary search over q ∈ [0, 1], where
we set δbin = 0.005 as the stopping criteria, to obtain the best robust subset (lowest adversarial risk)
in CR(T ) with empirical measure at least α.

Results. We choose α to reflect the best accuracy achieved by state-of-the-art classifiers, using
α = 0.01 and ε∞ ∈ {0.1, 0.2, 0.3, 0.4} for MNIST and selecting appropriate values to represent the
best typical results on the other datasets (see Table 1). Given the number of hyperrectangles, T , we
obtain the resulting error region using the proposed algorithm on the training dataset, and tune T for
the minimum adversarial risk on the testing dataset.

Figure 1 shows the learning curves regarding risk and adversarial risk for two specific experimental
settings (similar results are obtained under other experimental settings, see Appendix C.3). Figure
1(a) suggests that as we increase the initial covered percentage q, both risk and adversarial risk of the
corresponding error region decrease. This supports our use of binary search on q in Algorithm 1. On

4The adversarial risk of an error region E simply refers to the adversarial risk of fE .
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Table 1: Summary of the main results using our method for different settings with `∞ perturbations.

Dataset α ε∞ T Best q
Empirical Risk (%) Empirical AdvRisk (%)

training testing training testing

MNIST 0.01

0.1 5 0.662 1.22± 0.11 1.23± 0.12 3.65± 0.29 3.64± 0.30
0.2 10 0.660 1.12± 0.13 1.11± 0.10 5.76± 0.38 5.89± 0.44
0.3 10 0.629 1.12± 0.12 1.15± 0.13 7.34± 0.38 7.24± 0.38
0.4 10 0.598 1.15± 0.09 1.21± 0.09 9.89± 0.57 9.92± 0.60

CIFAR-10 0.05

2/255 10 0.680 5.32± 0.21 5.72± 0.25 7.29± 0.20 8.13± 0.26
4/255 20 0.688 5.59± 0.25 6.05± 0.40 11.43± 0.24 13.66± 0.33
8/255 40 0.734 5.55± 0.21 5.94± 0.34 13.69± 0.19 18.13± 0.30
16/255 75 0.719 5.16± 0.25 5.28± 0.23 19.77± 0.22 28.83± 0.46

Table 2: Comparisons between our method and the existing adversarially trained robust classifiers
under different settings. We use the Risk and AdvRisk for robust training methods to denote the
standard test error and attack success rate reported in literature. The AdvRisk reported for our method
can be seen as an estimated lower bound of adversarial risk for existing classifiers.

Dataset Strength (metric) Method Empirical Risk Empirical AdvRisk

MNIST ε∞ = 0.3
Madry et al. (2018) 1.20% 10.70%

Ours (T = 10, α = 0.012) 1.35%± 0.08% 8.28%± 0.22%

MNIST ε2 = 1.5
Schott et al. (2019) 1.00% 20.00%

Ours (T = 20, α = 0.01) 1.08% 2.12%

CIFAR-10 ε∞ = 8/255
Madry et al. (2018) 12.70% 52.96%

Ours (T = 40, α = 0.127) 14.22%± 0.46% 29.21%± 0.35%

the other hand, as can be seen from Figure 1(b), overfitting with respect to adversarial risk becomes
significant as we increase the number of hyperrectangles. According to the adversarial risk curve for
testing data, the optimal value of T is selected as T = 10 for MNIST (ε∞ = 0.3) and T = 40 for
CIFAR-10 (ε∞ = 8/255).

Table 1 summarizes the optimal parameters, the empirical risk and adversarial risk of the correspond-
ing error region on both training and testing datasets for each experimental setting (see Appendix C.1
for similar results on Fashion-MNIST and SVHN). Since the k-means algorithm does not guarantee
global optimum, we repeat our method for 10 runs with random restarts in terms of the best param-
eters, then report both the mean and the standard deviation. Our experiments provide examples of
rather robust error regions for real image datasets. For instance, in Table 1 we have a case where
the measure of the resulting error region increases from 5.94% to 18.13% after expansion with
ε∞ = 8/255 on CIFAR-10 dataset. This means that there could potentially be a classifier with 5.94%
risk and 18.13% adversarial risk, but the-state-of-the-art robust classifier has empirically-measured
adversarial risk 52.96% (Madry et al., 2018).

Noticing that the risk lower threshold α = 0.05 is much lower than the empirical risk 12.70% of the
adversarially-trained robust model reported in Madry et al. (2018), we further measure the empirical
concentration on MNIST and CIFAR-10 using our method with α set to be the same as the reported
standard test error in Madry et al. (2018), which is demonstrated in Table 2. In particular, we show
that the gap between the attack success rate of Madry et al.’s classifier (10.70%) and our estimated
best-achievable adversarial risk (8.28%) is quite small on MNIST, suggesting that the robustness of
Madry et al.’s classifier is actually close to the intrinsic robustness. In sharp contrast, the gap becomes
significantly larger on CIFAR-10: 29.21% for our estimate, while 52.96% for the reported attack
success rate in Madry et al. (2018). Regardless of the difference, this gap cannot be explained by
the concentration of measure phenomenon, suggesting there may still be room for developing more
robust classifiers, or that other inherent reasons impede learning a more robust classifier.
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Table 3: Comparisons between different methods for finding robust error region with `2 perturbations.

Dataset α ε2
Gilmer et al. (2018b) Our Method
Risk AdvRisk T Risk AdvRisk

MNIST 0.01
1.58 1.18% 3.92% 20 1.07% 2.19%
3.16 1.18% 9.73% 20 1.02% 4.15%
4.74 1.18% 23.40% 20 1.07% 10.09%

CIFAR-10 0.05
0.2453 5.27% 5.58% 5 5.16% 5.53%
0.4905 5.27% 5.93% 5 5.14% 5.83%
0.9810 5.27% 6.47% 5 5.12% 6.56%

4.2 Experiments for `2

For `2 adversaries, Theorem 3.10 guarantees the asymptotic convergence of the empirical concentra-
tion function characterized by union of balls B(T ) towards the actual concentration. Thus, it remains
to solve the corresponding optimization problem (3). Similar to `∞, we propose an empirical method
to search for desirable robust error regions under `2 perturbations. From a high level, our algorithm
(for pseudocode, see Algorithm 2 in Appendix B) places T balls in a sequential manner, and searches
for the best possible placement using a greedy approach at each time. Since enumerating all the
possible ball centers is infeasible, we restrict the choice of the center to be the set of training data
points. Our method keeps two sets of indices: one for the initial coverage and one for the coverage
after expansion, and updates them when we find the optimal placement, i.e. the ball centered at some
training data point that has the minimum expansion with respect to both sets.

We compare our empirical method for finding robust error regions characterized by a union of balls
with the hyperplane-based approach (Gilmer et al., 2018b) on MNIST and CIFAR-10. In particular,
the risk threshold α is set to be the same as the case of `∞, and the adversarial strength ε2 is chosen
such that the volume of an `2 ball with radius ε2 is roughly the same as the `∞ ball with radius ε∞,
using the conversion rule ε2 =

√
n/π · ε∞ as in Wong et al. (2018). Table 3 summarizes the optimal

parameters, the testing risk and adversarial risk (see Appendix C.2 for more detailed results, including
for other datasets) of the trained error regions using different methods, where we tune the number of
balls T for our method.

Our results show that there exist rather robust `2 error regions for real image datasets. For example,
the measure of the resulting error region using our method only increases by 0.69% (from 5.14% to
5.83%) after expansion with ε2 = 0.4905 on CIFAR-10. Compared with Gilmer et al. (2018b), our
method is able to find regions with significantly smaller adversarial risk (around half the adversarial
risk of regions found by their method) on MNIST, while attaining comparable error region robustness
on CIFAR-10. Nevertheless, the adversarial risk attained by state-of-the-art robust classifiers against
`2 perturbations is much higher than these reported rates (see Table 2 for a comparison with the best
robust classifier against `2 perturbations proposed in Schott et al. (2019)).

5 Conclusion

To understand whether theoretical results showing limits of intrinsic robustness for natural distribu-
tions apply to concrete datasets, we developed a general framework to measure the concentration
of an unknown distribution through its i.i.d. samples and a carefully-selected collection of subsets.
Our experimental results suggest that the concentration of measure phenomenon is not the sole
reason behind vulnerability of the existing classifiers to adversarial examples. In other words, recent
impossibility results (Gilmer et al., 2018b; Fawzi et al., 2018; Mahloujifar et al., 2019; Shafahi et al.,
2019) should not cause us to lose hope in the possibility of finding more robust classifiers.

Acknowledgements. This work was partially funded by an award from the National Science Founda-
tion SaTC program (Center for Trustworth Machine Learning, #1804603), an NSF CAREER award
(CCF-1350939), and support from Baidu, Intel, and Amazon.
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A Proofs of Theorems in Section 3

In this section, we prove Theorems 3.3, 3.5, 3.8 and 3.10.

A.1 Proof of Theorem 3.3

Proof. Define g(µ, α, ε,G) = argminE∈G {µ(Eε) : µ(E) ≥ α}, and let E = g(µ, α + δ, ε,G) and
Ê = g(µ̂S , α, ε,G). (Note that these sets achieving the minimum might not exist, in which case we
select a set for which the expansion is arbitrarily close to the infimum and every step of the proof will
extend to this variant).

By the definition of the complexity penalty we have

Pr
S←µm

[∣∣∣µ(Ê)− µ̂S(Ê)
∣∣∣ ≥ δ] ≤ φ(m, δ)

which implies
Pr

S←µm
[µ(Ê) ≤ α− δ] ≤ φ(m, δ).

Therefore, by the definition of h we have

Pr
S←µm

[µ(Êε) ≤ h(µ, α− δ, ε,G)] ≤ φ(m, δ). (4)

On the other hand, based on the definition of φε we have

Pr
S←µm

[∣∣∣µ(Êε)− µ̂S(Êε)
∣∣∣ ≥ δ] ≤ φε(m, δ). (5)

Combining Equation 4 and Equation 5, and by a union bound we get

Pr
S←µm

[µ̂S(Êε) ≤ h(µ, α− δ, ε,G)− δ] ≤ φ(m, δ) + φε(m, δ)

which by the definition of Ê implies that

Pr
S←µm

[h(µ̂S , α, ε,G) ≤ h(µ, α− δ, ε,G)− δ] ≤ φ(m, δ) + φε(m, δ). (6)

Now we bound the probability for the other side of our inequality. By the definition of the notion of
complexity penalty we have

Pr
S←µm

[|µ(E)− µ̂S(E)| ≥ δ] ≤ φ(m, δ)

which implies
Pr

S←µm
[µ̂S(E) ≤ α] ≤ φ(m, δ).

Therefore, by the definition of h we have,

Pr
S←µm

[µ̂S(Eε) ≤ h(µ̂S , α, ε,G)] ≤ φ(m, δ). (7)

On the other hand, based on the definition of φε we have

Pr
S←µm

[|µ(Eε)− µ̂S(Eε)| ≥ δ] ≤ φ(m, δ) + φε(m, δ). (8)

Combining Equations 7 and 8, by union bound we get

Pr
S←µm

[µ(Eε) ≤ h(µ̂S , α, ε,G)− δ] ≤ φ(m, δ) + φε(m, δ)
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which by the definition of E implies

Pr
S←µm

[h(µ, α+ δ, ε,G) ≤ h(µ̂S , α, ε,G)− δ] ≤ φ(m, δ) + φε(m, δ). (9)

Now combining Equations 6 and 9, by union bound we have

Pr
S←µm

[h(µ, α−δ, ε,G)−δ ≤ h(µ̂S , α, ε,G) ≤ h(µ, α+δ, ε,G)+δ] ≥ 1−2 (φ(m, δ) + φε(m, δ)) .

A.2 Proof of Theorem 3.5

In this section, we prove Theorem 3.5 using ideas similar to ideas used in Scott & Nowak (2006).
Before proving the theorem, we lay out the following lemma which will be used in the proof.

Lemma A.1 (Borel-Cantelli Lemma). Let {ET }T∈N be a series of events such that

∞∑
T=1

Pr[ET ] <∞

Then with probability 1, only finite number of events will occur.

Now we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. Define ET to be the event that

h(µ, α−δ(T ), ε,G(T ))−δ(T ) > h(µ̂ST
, α, ε) or h(µ, α+δ(T ), ε,G(T ))+δ(T ) < h(µ̂ST

, α, ε,G).

Based on Theorem 3.3 we have Pr[ET ] ≤ 2 · (φT (m(T ), δ(T )) + φTε (m(T ), δ(T ))). Therefore, by
Conditions 1 and 2 we have

∞∑
T=1

Pr[ET ] ≤ 2

( ∞∑
T=1

φT (m(T ), δ(T )) + φTε (m(T ), δ(T ))

)
<∞.

Now by Lemma A.1, we know there exist with measure 1 some j ∈ N, such that for all T ≥ j,

h(µ, α− δ(T ), ε,G(T ))− δ(T ) ≤ h(µ̂ST
, α, ε,G(T )) ≤ h(µ, α+ δ(T ), ε,G(T )) + δ(T ).

The above implies that

lim
T→∞

h(µ, α−δ(T ), ε,G(T ))−δ(T ) ≤ lim
T→∞

h(µ̂ST
, α, ε,G(T )) ≤ lim

T→∞
h(µ, α+δ(T ), ε,G(T ))+δ(T ).

We know that

lim
T→∞

h(µ, α− δ(T ), ε,G(T )) = lim
T1→∞

lim
T2→∞

h(µ, α− δ(T1), ε,G(T2))

(By condition 4) = lim
T1→∞

h(µ, α− δ(T1), ε)

(By local continuity and condition 3) = h(µ, α, ε).

Similarly, we have
lim
T→∞

h(µ, α+ δ(T ), ε,G(T )) = h(µ, α, ε).

Therefore we have,

lim
T→∞

h(µ, α, ε)− δ(T ) ≤ lim
T→∞

h(µ̂ST
, α, ε,G(T )) ≤ lim

T→∞
h(µ, α, ε) + δ(T )

which by condition 3 implies

lim
T→∞

h(µ̂ST
, α, ε,G(T )) = h(µ, α, ε).
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A.3 Proof of Theorem 3.8

Proof. This theorem follows from our general Theorem 3.5. We show that the choice of parameters
here satisfies all four conditions of Theorem 3.5.

If we let G(T ) to be the collection of subsets specified by complement of union of T hyperrectangles.
Then Gε(T ) will be the collection of of subsets specified by complement of union of T hyperrectangles
that are bigger than ε in each coordinate. Therefore we have Gε(T ) ⊂ G(T ). We know that the VC
dimension of G(T ) is dT = O(nT log(T )) because the VC dimension of all hyperrectangles is O(n)
and the functions formed by T fold union of functions in a VC class is at most n · T log(T ) (See
Eisenstat & Angluin (2007)). Therefore, by VC inequality we have

Pr
S←µm

[
sup
E∈G(T )

|µ(E)− µ̂S(E)| ≥ δ
]
≤ 8enT log(T ) log(m)−mδ2/128.

Therefore ΦT (m, δ) = 8enT log(T ) log(m)−mδ2/128 is a complexity penalty for both G(T ) and Gε(T ).
Hence, if we define δ(T ) = 1/T and m(T ) ≥ T 4, then the first three conditions of Theorem 3.5 are
satisfied. The fourth condition is also satisfied by the universal consistency of histogram rules (See
Devroye et al. (2013), Ch. 9).

A.4 Proof of Theorem 3.10

Proof. Similar to Theorem 3.8 This theorem follows from our general Theorem 3.5. We show that
the choice of parameters here satisfies all four conditions of Theorem 3.5.

If we let G(T ) to be the collection of subsets specified by union of T balls. Then Gε(T ) will be the
collection of of subsets specified by union of T balls with diameter at least ε. Similar to the proof of
Theorem 3.8, we have Gε(T ) ⊂ G(T ). We know that the VC dimension of all balls is O(n) so using
the fact that G(T ) is T fold union of balls, the VC dimension of G(T ) is dT = O(nT log(T )) (See
Eisenstat & Angluin (2007)). Therefore, by VC inequality we have complexity penalties similar to
those of Theorem 3.8 for both G(T ) and Gε(T ). Hence, if we define δ(T ) = 1/T and m(T ) ≥ T 4,
then the first three conditions of Theorem 3.5 are satisfied. The fourth condition is also satisfied by
the universal consistency of kernel-based rules (See Devroye et al. (2013) , Ch. 10).

B The Proposed Algorithms

This section provides the pseudocode and a runtime analysis for our algorithms for finding robust
error regions under `∞ and `2, respectively.

B.1 Pseudocode

B.2 Runtime Analysis

For `∞, we construct the systems of hyperrectangles by first precomputing an approximate k-NN
distance estimate using Ball Trees (Omohundro, 1989; Pedregosa et al., 2011) for each data point,
and then clustering the top-q densest data points into T partitions using the k-means algorithm, where
we binary search for the optimal parameter q. The time complexity of precomputing and sorting
the nearest neighbor distance estimates is approximately O(nd log(n)), where n is the total number
of data points in Rd. In addition, the time complexity of k-means algorithm is O(ndTI), where I
is the averaged number of iterations for k-means algorithm to converge. Therefore, the total time
complexity of the proposed algorithm for `∞ is O(nd log(n) + ndTI log(1/δ)). In our experiments
on CIFAR-10 (ε∞ = 8/255, T = 40 and δ = 0.005), the proposed algorithm takes 76 minutes for
precomputing the nearest neighbors, and takes around 2 hours for the iterative steps to converge on a
Intel Xeon CPU E5-2620 v4 server with 32 processors.

For `2, instead of computing the k-NN distances for each iteration, we precompute and keep the k-NN
neighbours using Ball Trees for each image to save computation, which requires a time complexity
of O(nd log n). The iterative steps require the major computation of O(αTn2d), since we iterate
through all the possible choices of ball centers and corresponding radii to find the optimal error
region with the smallest expansion. We believe the quadratic dependency on the sample size can be
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Algorithm 1: Heuristic Search for Robust Error Region under `∞
Input :a set of images S; perturbation strength ε∞; error threshold α; number of hyperrectangles

T ; number of nearest neighbours k; precision for binary search δbin.
1 rk(x)← compute the `1-norm distance to the k-th nearest neighbour for each x ∈ S;
2 Ssort ← sort all the images in S by rk(x) in an ascending order;
3 qlower ← 0.0, qupper ← 1.0;
4 while qupper − qlower > δbin do
5 q ← (qlower + qupper)/2;
6 perform kmeans clustering algorithm (T clusters, `1 metric) on the top-q images of Ssort;
7 {u(t)}Tt=1 ← record the centroids of the resulted T clusters;
8 for t = 1, 2, . . . , T do
9 Rect(u(t), r(t))← cover t-th cluster with the minimum-sized rectangle centered at u(t);

10 end
11 Eq ← X \ ∪Tt=1Rectε∞(u(t), r(t)) ; // Rectε(u, r) denotes the ε-expansion ofRect(u, r)
12 if |S ∩ Eq|/|S| ≥ α then
13 qlower ← q, AdvRiskq ←

∣∣{x ∈ S : x 6∈ ∪Tt=1Rect(u(t), r(t))
}∣∣/|S|;

14 else
15 qupper ← q;
16 end
17 end
18 q̂ ← argminq{AdvRiskq};

Output : (q̂, AdvRiskq̂ , Eq̂)

Algorithm 2: Heuristic Search for Robust Error Region under `2
Input :a set of images S; perturbation strength ε2; error threshold α; number of balls T .

1 Ê ← {}, Ŝinit ← {}, Ŝexp ← {};
2 for t = 1, 2, . . . , T do
3 klower ← d(α|S| − |Ŝinit|)/(T − t+ 1)e, kupper ← (α|S| − |Ŝinit|);
4 for u ∈ S do
5 for k ∈ [klower, kupper] do
6 rk(u)← compute the `2 distance from u to the k-th nearest neighbour in S \ Ŝinit;
7 Sinit(u, k)← {x ∈ S \ Ŝinit : ‖x− u‖2 ≤ rk(u)};
8 Sexp(u, k)← {x ∈ S \ Ŝexp : ‖x− u‖2 ≤ rk(u) + ε2};
9 end

10 end
11 (û, k̂)← argmin(u,k){|Sexp(u, k)| − |Sinit(u, k)|};
12 Ê ← Ê ∪ Ball(û, rk̂(û));
13 Ŝinit ← Ŝinit ∪ Sinit(û, k̂), Ŝexp ← Ŝexp ∪ Sexp(û, k̂);
14 end

Output : Ê

improved using better searching algorithm for finding the robust error region. Since our main focus
is to understand the limitation of robust learning on real datasets, we leave the optimization of the
proposed heuristic method for better computational efficiency as future work.
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C Other Experimental Results

C.1 Results for `∞ on other datasets

We also evaluate the proposed empirical method for `∞ metric on other benchmark image datasets,
including Fashion-MNIST (Xiao et al., 2017) and SVHN (Netzer et al., 2011).

Table 4: Summary of the main results using our method for different settings with `∞ perturbations.

Dataset α ε∞ T Best q
Empirical Risk (%) Empirical AdvRisk (%)

training testing training testing

Fashion-
MNIST

0.05
0.1 10 0.758 5.64± 0.78 5.92± 0.85 10.30± 0.72 11.56± 0.84
0.2 10 0.726 5.79± 1.00 6.00± 1.02 13.44± 0.60 14.82± 0.71
0.3 10 0.668 5.90± 0.94 6.13± 0.93 17.46± 0.53 18.87± 0.66

SVHN 0.05
0.01 10 0.812 5.21± 0.19 8.83± 0.30 6.08± 0.20 10.17± 0.29
0.02 10 0.773 5.31± 0.12 8.86± 0.20 7.76± 0.12 12.46± 0.15
0.03 10 0.750 5.15± 0.13 8.55± 0.22 8.88± 0.13 13.82± 0.25

C.2 Detailed results for `2 using our method

In this section, we demonstrate the detailed training and testing results on the best error region
obtained using Algorithm 2 on MNIST and CIFAR-10 with `2 perturbations, as well as results on
Fashion-MNIST and SVHN. Note that for the additional datasets, we set α to be the same as the case
of `∞ and set ε2 =

√
n/π · ε∞ using the same conversion rule, where n is the input dimension.

Table 5: Summary of the main results using our method for different settings with `2 perturbations.

Dataset α ε2 T
Empirical Risk Empirical AdvRisk

training testing training testing

MNIST 0.01
1.58 20 1.25% 1.07% 2.23% 2.19%
3.16 20 1.25% 1.02% 4.35% 4.15%
4.74 20 1.25% 1.07% 10.71% 10.09%

CIFAR-10 0.05
0.2453 5 5.00% 5.16% 5.22% 5.53%
0.4905 5 5.00% 5.14% 5.61% 5.83%
0.9810 5 5.00% 5.12% 6.38% 6.56%

Fashion-
MNIST

0.05
1.58 10 5.25% 5.07% 7.84% 7.77%
3.16 10 5.25% 4.99% 15.95% 16.23%
4.74 10 5.25% 5.21% 19.76% 20.10%

SVHN 0.05
0.3127 10 5.00% 6.92% 5.24% 7.34%
0.6254 10 5.00% 7.30% 5.59% 8.16%
0.9381 10 5.00% 7.56% 5.96% 8.94%
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C.3 Additional training curves
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(a) MNIST (ε∞ = 0.1 and T = 10)
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(b) MNIST (ε∞ = 0.3 and T = 10)
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(c) CIFAR-10 (ε∞ = 4/255 and T = 20)
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(d) CIFAR-10 (ε∞ = 8/255 and T = 40)

Figure 2: Risk and adversarial risk of the corresponding region as q varies under different settings.
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Figure 3: Adversarial risk of the resulted error region with best q obtained using our method as
T varies under different settings: (a) MNIST (ε = 0.1, α = 0.01) and CIFAR-10 (ε∞ = 2/255,
α = 0.05); (b) MNIST (ε∞ = 0.2, α = 0.01) and CIFAR-10 (ε∞ = 4/255, α = 0.05)
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