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Adversarial Risk

Given distribution µ, ground-truth classifier f ∗ and some classifier f .

Define risk as

Pr
x∼µ

[
f (x) 6= f ∗(x)

]
= µ(E).

Define adversarial risk w.r.t. ε perturbation as

Pr
x∼µ

[
∃ x′ ∈ Ball(x, ε) s.t. f (x′) 6= f ∗(x′)

]
= µ(Eε).

Concentration for Real Distributions?

What is the minimum possible adversarial risk given risk is at least α?

min
E⊆X

µ(Eε) such that µ(E) ≥ α.

Concentration of measure gives lower bound for nice distributions:

I Uniform distribution over spheres under `2 (Gilmer et al., 2018)

I Gaussian distribution under `2 (Fawzi et al., 2018)

I Any product distribution under `0 (Mahloujifar et al., 2018)

I Uniform distribution over hypercube under `2 (Shafahi et al., 2019)

Can we estimate concentration of measure for real distributions?

Our Empirical Framework

Challenge: do not know the PDF of the distribution.

Solution: replace µ with empirical distribution µ̂ using samples S.

µ̂(A) ≡
∑
x∈S

1A(x)/|S|.

Challenge: cannot search through all the possible subsets.

Solution: limit the search space to a special collection of subsets G.

Remaining task: solve the following empirical problem:

min
E⊆G

µ̂(Eε) such that µ̂(E) ≥ α.

Theoretical Results for `∞

Let GT be the collection of subsects specified by complement of union of
T hyperrectangles.

Main Theorem: Define

c = min
E⊆X

µ(Eε) such that µ(E) ≥ α.

Let µ̂T be the empirical distribution with sample size T 4. Define

cT = min
E∈GT

µ̂T (Eε) such that µ̂T (E) ≥ α.

With probability 1 over the randomness of training data, we have

lim
T→∞

cT = c.

Finding Robust Error Region for `∞

1. Sort the dataset using `1 distance to the k-th nearest neighbor.

2. Perform kmeans clustering on the top-q densest images.

3. Obtain T rectangular image clusters and expand them by ε in `∞.

4. Treat the complement of these hyperrectangles as our error region.

Figure: Illustration of the proposed algorithm using generated data

Conclusions and Future Work

I Impossibility results, such as Gilmer et al. (2018), should not
make the community hopeless in finding more robust classifiers.

I Concentration of measure is not the sole reason behind the
vulnerability of existing classifiers to adversarial examples.

I Study the error regions of practical machine learning classifers
would be an interesting future direction.

Main Experimental Results

Table: Experiments for `∞ (Complement of Union of Hyperrectangles)

Dataset α ε Risk Adversarial Risk

MNIST 0.01
0.1 1.23%± 0.12% 3.64%± 0.30%

0.3 1.15%± 0.13% 7.24%± 0.38%

CIFAR-10 0.05
2/255 5.72%± 0.25% 8.13%± 0.26%

8/255 5.94%± 0.34% 18.13%± 0.30%

Table: Experiments for `2 (Union of Balls)

Dataset α ε2 Risk Adversarial Risk

MNIST 0.01
3.16 1.02% 4.15%

4.74 1.07% 10.09%

CIFAR-10 0.05
0.4905 5.14% 5.83%

0.9810 5.12% 6.56%

Table: Comparisons with state-of-the-art robust classifiers

Dataset Strength Method Risk Adversarial Risk

MNIST ε∞ = 0.3
Madry et al. (2017) 1.20% 10.70%

Our Bound 1.35% 8.28%

MNIST ε2 = 1.5
Schott et al. (2018) 1.00% 20.00%

Our Bound 1.08% 2.12%

CIFAR-10 ε∞ = 8/255
Madry et al. (2017) 12.70% 52.96%

Our Bound 14.22% 29.21%
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