
Lightweight Formal Methods and Beyond
David Evans (Professor of Computer Science, University of Virginia)

SM/PhD advisee of John Guttag (1993-1999)
Introduction to Formal Methods

In 1993, I was a fourth-year undergraduate at MIT 
and took a seminar on Formal Method that John 
co-taught with Jeannette Wing (JG PhD 1983) and 
learned the beauty and power of proving 
properties of software.

Since getting a simple traffic light example to 
work through the automatic theorem proving tools 
took me two days, I wanted to work on something 
easier and more scalable, and connected with a 
vision John had for incorporating specifications 
with code and lightweight static analyses.  

Formal Methods at UVA (2000-2015) Secure Computation (2009-2019)

Thanks John!

Effort Required
Low Unfathomable

Formal Verifiers

Bu
gs

 D
et

ec
te

d

none

all

Compilers

LCLint

David Evans, John Guttag, Jim Horning and Yang Meng 
Tan. LCLint: A Tool for Using Specifications to Check 
Code. SIGSOFT Symposium on the Foundations of 
Software Engineering, December 1994.

LCLint: Annotation-Assisted Static Checking

Relaxing requirements for soundness and 
completeness made it possible (even in 
the 1990s) for formal methods to be 
useful.

This resulted in an open-source tool, that 
I still occasionally get bug reports for.

PhD Dissertation: Policy-Directed Code Safety
Program

Safe Program

Safety
Policy

David Evans and Andrew Twyman. Policy-Directed Code Safety. In 
IEEE Symposium on Security and Privacy (Oakland), May 1999.

policy LimitWrite
    NoOverwrite, LimitBytesWritten (1000000)

property LimitBytesWritten (n: int)
   requires TrackBytesWritten;
   check RFileSystem.write (file: RFile, nbytes: int)
     if (bytes_written > n) 
       violation (“Writing more than ” + n + “ bytes.”); 

David Evans. Static Detection of Dynamic Memory Errors. 
In SIGPLAN Conference on Programming Language 
Design and Implementation (PLDI), May 1996.

Annotating and statically checking ownership 
and properties of dynamically-allocated 
memory could detect many programming errors 
(and 20+ years later, has become widespread 
through Rust programming language. 

A rich language for describing safety policies and efficient 
implementation by rewriting programs. With John’s help, this 
got me my dream job at UVA, but no success getting industry 
adoption and little progress towards better safety policies. 

IEEE Security and 
Privacy Magazine, 
May/June 2011. Co-
edited by David Evans 
and Sal Stolfo

David Larochelle and David Evans. 
Statically Detecting Likely Buffer 
Overflow Vulnerabilities. In USENIX 
Security Symposium, 2001.

With my first student at 
UVA, LCLint evolved into a 
tool focused on detecting 
security vulnerabilities.

Automatically Inferring Specifications

Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, Manuvir Das. 
Perracotta: Mining Temporal API Rules from Imperfect Traces. In  International 
Conference on Software Engineering (ICSE) 2006.

 

SR_CLNT_HELLO 
SW_SRVR_HELLO 

SW_CERT 
SW_KEY_EXCH 
SW_CERT_REQ 

SW_SRVR_DONE 

SR_CERT 
SR_KEY_EXCH 
SR_CERT_VRFY 

SR_FINISHED 
SW_CHANGE 
SW_FINISHED 

BEFORE+ACCEPT 

SW_FLUSH 
OK 

SW_FLUSH 

Client Server 

Program Instrumented
Program

Instrum
entation

Test Suite

Execution 
Traces

Testing

Inferred 
Properties

Candidate
Patterns

Inference

Formal Methods for Security

Writing specifications is hard – we need tools to automatically infer 
likely specifications from program executions (and they need to be 
resilient to incorrect programs to infer intended specifications).

Yuchen Zhou and David Evans. SSOScan: Automated Testing of 
Web Applications for Single Sign-On Vulnerabilities. In USENIX 
Security Symposium, 2014.

Yuchen Zhou and David Evans. Understanding and Monitoring 
Embedded Web Scripts. IEEE Security and Privacy (“Oakland”). 2015.

Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, 
Wei Hu, Jack Davidson, John Knight, Anh Nguyen-Tuong, and 
Jason Hiser. N-Variant Systems: A Secretless Framework for 
Security through Diversity. USENIX Security Symposium, 2006.

Variant 

0
Variant

1

Poly-
grapher

M
onitor

N
-V

ar
ia

nt
 S

ys
te

m
s

SS
O

Sc
an

Sc
rip

tIn
sp

ec
to

r

Adversarial Machine Learning (since 2015)

securecomputation.org

Yan Huang, David Evans, Jonathan Katz, and Lior 
Malka. Faster Secure Two-Party Computation Using 
Garbled Circuits. USENIX Security 2011. 

Teaching

+ =
Samee Zahur, Mike Rosulek, and David Evans. Two Halves 
Make a Whole: Reducing Data Transfer in Garbled Circuits 
using Half Gates. EuroCrypt 2015. 

Samee Zahur, Xiao Wang, Mariana 
Raykova, Adrià Gascón, Jack Doerner, 
David Evans, Jonathan Katz. Revisiting 
Square-Root ORAM Efficient Random 
Access in Multi-Party Computation. IEEE 
Security and Privacy (“Oakland”) 2016.

Weilin Xu, Yanjun Qi, and David Evans. Automatically Evading 
Classifiers: A Case Study on PDF Malware Classifiers. NDSS 2016.

Saeed Mahloujifar, Xiao Zhang, Mohammad Mahmoody, and 
David Evans. Empirically Measuring Concentration: 
Fundamental Limits on Intrinsic Robustness. NeurIPS 2019.

Bargav Jayaraman and David Evans. Are Attribute 
Inference Attacks Just Imputation?. In ACM CCS 2022.

Yulong Tian, Fnu Suya, Anshuman Suri, Fengyuan Xu, David Evans. 
Manipulating Transfer Learning for Property Inference. CVPR 2023.

Bargav Jayaraman (2022)
Xiao Zhang (2022)
Fnu Suya (2023)
Josephine Lamp (2024)
Anshuman Suri (2024)

Some of John’s Academic Grandchildren

Jinlin Yang (2007)
Nathanael Paul (2008)
Yan Huang (2012)
Yuchen Zhou (2015)
Samee Zahur (2016)
Weilin Xu (2019)


