Archive for the 'Privacy' Category

Violations of Children’s Privacy Laws

Sunday, September 16th, 2018

The New York Times has an article, How Game Apps That Captivate Kids Have Been Collecting Their Data about a lawsuit the state of New Mexico is bringing against app markets (including Google) that allow apps presented as being for children in the Play store to violate COPPA rules and mislead users into tracking children. The lawsuit stems from a study led by Serge Egleman’s group at UC Berkeley that analyzed COPPA violations in children’s apps. Serge was an undergraduate student here (back in the early 2000s) – one of the things he did as a undergraduate was successfully sue a spammer.

The original paper about the study: “Won’t Somebody Think of the Children?” Examining COPPA Compliance at Scale, Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On, Abbas Razaghpanah, Narseo Vallina-Rodriguez, and Serge Egelman. Proceedings on Privacy Enhancing Technologies (PETS) 2018.



Serge Egelman, a researcher with the International Computer Science Institute and the University of California, Berkeley, helped lead the study of nearly 6,000 children’s Android apps

USENIX Security 2018

Sunday, August 19th, 2018

Nathaniel Grevatt (“GDPR-Compliant Data Processing: Improving Pseudonymization with Multi-Party Computation”), Matthew Wallace and Parvesh Samayamanthula (“Deceiving Privacy Policy Classifiers with Adversarial Examples”), and Guy Verrier (“How is GDPR Affecting Privacy Policies?”, joint with Haonan Chen and Yuan Tian) presented posters at USENIX Security Symposium 2018 in Baltimore, Maryland.

There were also a surprising number of appearances by an unidentified unicorn:


Letter to DHS

Saturday, November 18th, 2017

I was one of 54 signatories on a letter organized by Alvaro Bedoya (from Georgetown University Law Center) from technology experts to DHS (Acting) Secretary Elaine Duke in opposition to the proposed plans to use algorithms to identify undesirable individuals as part of the Extreme Vetting Initiative: [PDF]. The Brennan Center’s Web page provides a lot of resources supporting the letter.

Some media coverage:

Highlights from CCS 2017

Saturday, November 18th, 2017

The 24th ACM Conference on Computer and Communications Security was held in Dallas, 30 October – 3 November. Being Program Committee co-chair for a conference like this is a full-year commitment, and the work continues throughout much of the year preceding the conference. The conference has over 1000 registered attendees, a record for any academic security research conference.

Here are a few highlights from the conference week.



PC Chairs’ Welcome (opening session)



Giving the PC Chairs’ Welcome Talk



Audience at Opening Session



ACM CCS 2017 Paper Awards Finalists



CCS 2017 Awards Banquet




At the Award’s Banquet, I got to award a Best Paper award to SRG alum Jack Doerner (I was, of course, recused by conflict from being involved in any decisions on his paper).




UVA Lunch (around the table starting at front left): Suman Jana (honorary Wahoo by marriage), Darion Cassel (SRG BSCS 2017, now at CMU), Will Hawkins, Jason Hiser, Samee Zahur (SRG PhD 2016, now at Google), Jack Doerner (SRG BACS 2016, now at Northeastern), Joe Calandrino (now at FTC); Back right to front: Ben Kreuter (now at Google), Anh Nguyen-Tuong, Jack Davidson, Yuan Tian, Yuchen Zhou (SRG PhD 2015, now at Palo Alto Networks), David Evans.

Alumna-Turned-Internet Security Expert Listed Among Nation’s Top Young Innovators

Friday, September 22nd, 2017

Adrienne Porter Felt (SRG BSCS 2008) was selected as one of Technology Review’s 35 Innovators Under 35.

UVA Today has an article:Alumna-Turned-Internet Security Expert Listed Among Nation’s Top Young Innovators, UVA Today, 21 September 2017.

Felt started working in security when she was a second-year engineering student, responding to a request from computer science professor David Evans, who taught the “Program and Data Representation” course. Evans said Felt stood out amongst her peers because of her “well-thought-out answers and meticulous diagrams.”

“For the summer after her second year, she joined a project one of my Ph.D. students was working on to use the disk drive controller to detect malware based on the reads and writes it makes that are visible to the disk,” Evans said. “She did great work on that project, and by the end of the summer was envisioning her own research ideas.

“She came up with the idea of looking at privacy issues in Facebook applications, which, back in 2007, was just emerging, and no one else was yet looking into privacy issues like this.”

Taking Evans’ offer for a research project was a turning point in Felt’s life, showing her something she liked that she could do well.

“It turned out that I really loved it,” she said. “I like working in privacy and security because I enjoy helping people control their digital experiences. I think of it as, ‘I’m professionally paranoid, so that other people don’t need to be.’”

In her final semester as an undergraduate student at UVA, Felt taught a student-led class on web browsers.

“Her work at Google has dramatically changed the way web browsers convey security information to users, making the web safer for everyone,” Evans said. “Her team at Google has been studying deployment of HTTPS, the protocol that allows web clients to securely communicate with servers, and has had fantastic success in improving security of websites worldwide, as well as a carefully designed plan to use browser interfaces to further encourage adoption of secure web protocols.

Modest Proposals for Google

Friday, June 9th, 2017

Great to meet up with Wahooglers Adrienne Porter Felt, Ben Kreuter, Jonathan McCune, Samee Zahur (Google’s latest addition from my group), and (honorary UVAer interning at Google this summer) Riley Spahn at Google’s Research Summit on Security and Privacy this week in Mountain View.

As part of the meeting, the academic attendees were given a chance to give a 3-minute pitch to tell Google what we want them to do. The slides I used are below, but probably don’t make much sense by themselves.

The main modest proposal I tried to make is that Google should take it on as their responsibility to make sure nothing bad ever happens to anyone anywhere. They can start with nothing bad ever happening on the Internet, but with the Internet pretty much everywhere, should expand the scope to cover everywhere soon.

To start with an analogy from the days when Microsoft ruled computing. There was a time when Windows bluescreens were a frequent experience for most Windows users (and at the time, this pretty much mean all computer users). Microsoft analyzed the crashes and concluded that nearly all were because of bugs in device drivers, so it wasn’t their fault and was horribly unfair for them to be blamed for the crashes. Of course, to people losing their work because of a crash, it doesn’t really matter who’s code was to blame. By the end of the 90s, though, Microsoft took on the mission of reducing the problems with device drivers, and a lot of great work came out of this (e.g., the Static Driver Verifier), with dramatic improvements on the typical end user’s computing experience.

Today, Google rules a large chunk of computing. Lots of bad things happen on the Internet that are not Google’s fault. As the latest example in the news, the leaked NSA report of Russian attacks on election officials describes a phishing attack that exploits vulnerabilities in Microsoft Word. Its easy to put the blame on overworked election officials who didn’t pay enough attention to books on universal computation they read when they were children, or to put it on Microsoft for allowing Word to be exploited.

But, Google’s name is also all over this report – the emails when through gmail accounts, the attacks phished for Google credentials, and the attackers used plausibly-named gmail accounts. Even if Google isn’t too blame for the problems that enable such an attack, they are uniquely positioned to solve it, both because of their engineering capabilities and resources, but also because of the comprehensive view they have of what happens on the Internet and powerful ability to influence it.

Google is a big company, with lots of decentralized teams, some of which definitely seem to get this already. (I’d point to the work the Chrome Security Team has done, MOAR TLS, and RAPPOR as just a few of many examples of things that involve a mix of techincal and engineering depth and a broad mission to make computing better for everyone, not obviously connected to direct business interests.) But, there are also lots of places where Google doesn’t seem to be putting serious efforts into solving problems they could but viewing them as outside scope because its really someone else’s fault (my particular motivating example was PDF malware). As a company, Google is too capable, important, and ubiquitous to view problems as out-of-scope just because they are obviously undecidable or obviously really someone else’s fault.



[Also on Google +]

Aggregating Private Sparse Learning Models Using Multi-Party Computation

Friday, December 9th, 2016

Bargav Jayaraman presented on privacy-preserving sparse learning at the Private Multi‑Party Machine Learning workshop attached to NIPS 2016 in Barcelona.



A short paper summarizing the work is: Lu Tian, Bargav Jayaraman, Quanquan Gu, and David Evans. Aggregating Private Sparse Learning Models Using Multi-Party Computation [PDF, 6 pages].

At the workshop, Jack Doerner also presented a talk on An Introduction to Practical Multiparty Computation.

Secure Stable Matching at Scale

Tuesday, August 30th, 2016

Our paper on secure stable matching is now available [PDF, 12 pages]:

Jack Doerner, David Evans, abhi shelat. Secure Stable Matching at Scale. 23rd ACM Conference on Computer and Communications Security (CCS). Vienna, Austria. 24-28 October 2016.

See the OblivC.org site for the code and data. Jack Doerner will present the paper at CCS in October.


Abstract

When a group of individuals and organizations wish to compute a stable matching — for example, when medical students are matched to medical residency programs — they often outsource the computation to a trusted arbiter to preserve the privacy of participants’ preference rankings. Secure multi-party computation presents an alternative that offers the possibility of private matching processes that do not rely on any common trusted third party. However, stable matching algorithms are computationally intensive and involve complex data-dependent memory access patterns, so they have previously been considered infeasible for execution in a secure multiparty context on non-trivial inputs.

We adapt the classic Gale-Shapley algorithm for use in such a context, and show experimentally that our modifications yield a lower asymptotic complexity and more than an order of magnitude in practical cost improvement over previous techniques. Our main insights are to design new oblivious data structures that exploit the properties of the matching algorithms. We then apply our secure computation techniques to the instability chaining algorithm of Roth and Peranson, currently in use by the National Resident Matching Program. The resulting algorithm is efficient enough to be useful at the scale required for matching medical residents nationwide, taking just over 17 hours to complete an execution simulating the 2016 NRMP match with more than 35,000 participants and 30,000 residency slots.

FTC Visit

Thursday, August 18th, 2016

Great to visit our former student Joseph Calandrino at the Federal Trade Commission in DC, where he is now a Research Director.

Denis Nekipelov and I gave a joint talk there about using secure multi-party computation techniques to enable data analyses across sensitive, divided data sets in the room where the FTC commissioners meet.



Denis Nekipelov, Joseph Calandrino, David Evans, Devesh Ravel

SRG at Oakland 2016

Wednesday, May 25th, 2016

At the IEEE Symposium on Security and Privacy in San Jose, CA, Samee Zahur presented on Square-Root ORAM and Anant, Jack, and Sam presented posters.



Anant Kharkar
Evading Web Malware Classifiers using Genetic Programming


Jack Doerner
Secure Gale-Shapley: Efficient Stable Matching for Multi-Party Computation


Samuel Havron
Secure Multi-Party Computation as a Tool for Privacy-Preserving Data Analysis