Merlin, Morgan, and the Importance of Thresholds and Priors

Post by Katherine Knipmeyer

Machine learning poses a substantial risk that adversaries will be able to discover information that the model does not intend to reveal. One set of methods by which consumers can learn this sensitive information, known broadly as membership inference attacks, predicts whether or not a query record belongs to the training set. A basic membership inference attack involves an attacker with a given record and black-box access to a model who tries to determine whether said record was a member of the model’s training set.

Read More…

Adversarially Robust Representations

Post by Sicheng Zhu

With the rapid development of deep learning and the explosive growth of unlabeled data, representation learning is becoming increasingly important. It has made impressive applications such as pre-trained language models (e.g., BERT and GPT-3).

Popular as it is, representation learning raises concerns about the robustness of learned representations under adversarial settings. For example, how can we compare the robustness to different representations, and how can we build representations that enable robust downstream classifiers?

Read More…

Intrinsic Robustness using Conditional GANs

The video of Xiao’s presentation for AISTATS 2020 is now available: Understanding the Intrinsic Robustness of Image Distributions using Conditional Generative Models

Starting with Gilmer et al. (2018), several works have demonstrated the inevitability of adversarial examples based on different assumptions about the underlying input probability space. It remains unclear, however, whether these results apply to natural image distributions. In this work, we assume the underlying data distribution is captured by some conditional generative model, and prove intrinsic robustness bounds for a general class of classifiers, which solves an open problem in Fawzi et al. (2018). Building upon the state-of-the-art conditional generative models, we study the intrinsic robustness of two common image benchmarks under l2 perturbations, and show the existence of a large gap between the robustness limits implied by our theory and the adversarial robustness achieved by current state-of-the-art robust models.

Read More…

Hybrid Batch Attacks at USENIX Security 2020

Here’s the video for Suya’s presentation on Hybrid Batch Attacks at USENIX Security 2020:


Download Video [mp4]

Blog Post
Paper: [PDF] [arXiv]

Pointwise Paraphrase Appraisal is Potentially Problematic

Hannah Chen presented her paper on Pointwise Paraphrase Appraisal is Potentially Problematic at the ACL 2020 Student Research Workshop:

The prevailing approach for training and evaluating paraphrase identification models is constructed as a binary classification problem: the model is given a pair of sentences, and is judged by how accurately it classifies pairs as either paraphrases or non-paraphrases. This pointwise-based evaluation method does not match well the objective of most real world applications, so the goal of our work is to understand how models which perform well under pointwise evaluation may fail in practice and find better methods for evaluating paraphrase identification models. As a first step towards that goal, we show that although the standard way of fine-tuning BERT for paraphrase identification by pairing two sentences as one sequence results in a model with state-of-the-art performance, that model may perform poorly on simple tasks like identifying pairs with two identical sentences. Moreover, we show that these models may even predict a pair of randomly-selected sentences with higher paraphrase score than a pair of identical ones.

Read More…

De-Naming the Blog

This blog was started in January 2008, a bit over eight years after I started as a professor at UVA and initiated the research group. It was named after Thomas Jefferson’s cipher wheel, which has long been (and remains) one of my favorite ways to introduce cryptography.

Figuring out how to honor our history, including Jefferson’s founding of the University, and appreciate his ideals and enormous contributions, while confronting the reality of Jefferson as a slave owner and abuser, will be a challenge and responsibility for people above my administrative rank. But, I’ve come to see that it is harmful to have a blogged named after Jefferson so have removed the Jefferson’s Wheel name from this research group blog.

Read More…

Oakland Test-of-Time Awards

I chaired the committee to select Test-of-Time Awards for the IEEE Symposium on Security and Privacy symposia from 1995-2006, which were presented at the Opening Section of the 41st IEEE Symposium on Security and Privacy.

NeurIPS 2019

Here's a video of Xiao Zhang's presentation at NeurIPS 2019:
https://slideslive.com/38921718/track-2-session-1 (starting at 26:50)

See this post for info on the paper.

Here are a few pictures from NeurIPS 2019 (by Sicheng Zhu and Mohammad Mahmoody):






USENIX Security 2020: Hybrid Batch Attacks

New: Video Presentation

Finding Black-box Adversarial Examples with Limited Queries

Black-box attacks generate adversarial examples (AEs) against deep neural networks with only API access to the victim model.

Existing black-box attacks can be grouped into two main categories: