Congratulations to Anshuman Suri for successfully defending his PhD thesis!
Tianhao Wang, Dr. Anshuman Suri, Nando Fioretto, Cong Shen
On Screen: David Evans, Giuseppe Ateniese Inference Privacy in Machine Learning Using machine learning models comes at the risk of leaking information about data used in their training and deployment. This leakage can expose sensitive information about properties of the underlying data distribution, data from participating users, or even individual records in the training data.
MIMIR logo. Image credit: GPT-4 + DALL-E Paper Code Data Membership inference attacks (MIAs) attempt to predict whether a particular datapoint is a member of a target model’s training data. Despite extensive research on traditional machine learning models, there has been limited work studying MIA on the pre-training data of large language models (LLMs).
We perform a large-scale evaluation of MIAs over a suite of language models (LMs) trained on the Pile, ranging from 160M to 12B parameters.
Tired of diverse definitions of machine learning privacy risks? Curious about game-based definitions? In our paper, we present privacy games as a tool for describing and analyzing privacy risks in machine learning. Join us on May 22nd, 11 AM @IEEESSP '23 https://t.co/NbRuTmHyd2pic.twitter.com/CIzsT7UY4b
Manipulating Transfer Learning for Property Inference Transfer learning is a popular method to train deep learning models efficiently. By reusing parameters from upstream pre-trained models, the downstream trainer can use fewer computing resources to train downstream models, compared to training models from scratch.
The figure below shows the typical process of transfer learning for vision tasks:
However, the nature of transfer learning can be exploited by a malicious upstream trainer, leading to severe risks to the downstream trainer.
Anshuman Suri wrote up an interesting post on his experience with the MICO Challenge, a membership inference competition that was part of SaTML. Anshuman placed second in the competition (on the CIFAR data set), where the metric is highest true positive rate at a 0.1 false positive rate over a set of models (some trained using differential privacy and some without).
Anshuman’s post describes the methods he used and his experience in the competition: My submission to the MICO Challenge.
(Cross-post by Anshuman Suri)
Distribution inference attacks aims to infer statistical properties of data used to train machine learning models. These attacks are sometimes surprisingly potent, as we demonstrated in previous work.
KL Divergence Attack Most attacks against distribution inference involve training a meta-classifier, either using model parameters in white-box settings (Ganju et al., Property Inference Attacks on Fully Connected Neural Networks using Permutation Invariant Representations, CCS 2018), or using model predictions in black-box scenarios (Zhang et al.
Here’s the slides from my Cray Distinguished Speaker talk on On Leaky Models and Unintended Inferences: [PDF]
The chatGPT limerick version of my talk abstract is much better than mine:
A machine learning model, oh so grand
With data sets that it held in its hand
It performed quite well
But secrets to tell
And an adversary’s tricks it could not withstand.
Thanks to Stephen McCamant and Kangjie Lu for hosting my visit, and everyone at University of Minnesota.
Post by Bargav Jayaraman
Attribute inference attacks have been shown by prior works to pose privacy threat against ML models. However, these works assume the knowledge of the training distribution and we show that in such cases these attacks do no better than a data imputataion attack that does not have access to the model. We explore the attribute inference risks in the cases where the adversary has limited or no prior knowledge of the training distribution and show that our white-box attribute inference attack (that uses neuron activations to infer the unknown sensitive attribute) surpasses imputation in these data constrained cases.
Congratulations to Bargav Jayaraman for successfully defending his PhD thesis!
Dr. Jayaraman and his PhD committee: Mohammad Mahmoody, Quanquan Gu (UCLA Department of Computer Science, on screen), Yanjun Qi (Committee Chair, on screen), Denis Nekipelov (Department of Economics, on screen), and David Evans Bargav will join the Meta AI Lab in Menlo Park, CA as a post-doctoral researcher.
Analyzing the Leaky Cauldron: Inference Attacks on Machine Learning Machine learning models have been shown to leak sensitive information about their training data.
I gave a talk in the Berryville Institute of Machine Learning in the Barn series on What Machine Learnt Models Reveal, which is now available as an edited video:
David Evans, a professor of computer science researching security and privacy at the University of Virginia, talks about data leakage risk in ML systems and different approaches used to attack and secure models and datasets. Juxtaposing adversarial risks that target records and those aimed at attributes, David shows that differential privacy cannot capture all inference risks, and calls for more research based on privacy experiments aimed at both datasets and distributions.