Congratulations, Dr. Suri!

Congratulations to Anshuman Suri for successfully defending his PhD thesis! Tianhao Wang, Dr. Anshuman Suri, Nando Fioretto, Cong Shen On Screen: David Evans, Giuseppe Ateniese Inference Privacy in Machine Learning Using machine learning models comes at the risk of leaking information about data used in their training and deployment. This leakage can expose sensitive information about properties of the underlying data distribution, data from participating users, or even individual records in the training data.

Read More…

Congratulations, Dr. Lamp!

Tianhao Wang (Committee Chair), Miaomiao Zhang, Lu Feng (Co-Advisor), Dr. Josie Lamp, David Evans On screen: Sula Mazimba, Rich Nguyen, Tingting Zhu Congratulations to Josephine Lamp for successfully defending her PhD thesis! Trustworthy Clinical Decision Support Systems for Medical Trajectories The explosion of medical sensors and wearable devices has resulted in the collection of large amounts of medical trajectories. Medical trajectories are time series that provide a nuanced look into patient conditions and their changes over time, allowing for a more fine-grained understanding of patient health.

Read More…

Congratulations, Dr. Suya!

Congratulations to Fnu Suya for successfully defending his PhD thesis! Suya will join the Unversity of Maryland as a MC2 Postdoctoral Fellow at the Maryland Cybersecurity Center this fall. On the Limits of Data Poisoning Attacks Current machine learning models require large amounts of labeled training data, which are often collected from untrusted sources. Models trained on these potentially manipulated data points are prone to data poisoning attacks. My research aims to gain a deeper understanding on the limits of two types of data poisoning attacks: indiscriminate poisoning attacks, where the attacker aims to increase the test error on the entire dataset; and subpopulation poisoning attacks, where the attacker aims to increase the test error on a defined subset of the distribution.

Read More…

Congratulations, Dr. Jayaraman!

Congratulations to Bargav Jayaraman for successfully defending his PhD thesis! Dr. Jayaraman and his PhD committee: Mohammad Mahmoody, Quanquan Gu (UCLA Department of Computer Science, on screen), Yanjun Qi (Committee Chair, on screen), Denis Nekipelov (Department of Economics, on screen), and David Evans Bargav will join the Meta AI Lab in Menlo Park, CA as a post-doctoral researcher. Analyzing the Leaky Cauldron: Inference Attacks on Machine Learning Machine learning models have been shown to leak sensitive information about their training data.

Read More…

Congratulations, Dr. Zhang!

Congratulations to Xiao Zhang for successfully defending his PhD thesis! Dr. Zhang and his PhD committee: Somesh Jha (University of Wisconsin), David Evans, Tom Fletcher; Tianxi Li (UVA Statistics), David Wu (UT Austin), Mohammad Mahmoody; Xiao Zhang. Xiao will join the CISPA Helmholtz Center for Information Security in Saarbrücken, Germany this fall as a tenure-track faculty member. From Characterizing Intrinsic Robustness to Adversarially Robust Machine Learning The prevalence of adversarial examples raises questions about the reliability of machine learning systems, especially for their deployment in critical applications.

Read More…

Congratulations Dr. Xu!

Congratulations to Weilin Xu for successfully defending his PhD Thesis! Weilin's Committee: Homa Alemzadeh, Yanjun Qi, Patrick McDaniel (on screen), David Evans, Vicente Ordóñez Román Improving Robustness of Machine Learning Models using Domain Knowledge Although machine learning techniques have achieved great success in many areas, such as computer vision, natural language processing, and computer security, recent studies have shown that they are not robust under attack. A motivated adversary is often able to craft input samples that force a machine learning model to produce incorrect predictions, even if the target model achieves high accuracy on normal test inputs.

Read More…

All Posts by Category or Tags.