NeurIPS 2023: What Distributions are Robust to Poisoning Attacks?

Post by Fnu Suya

Data poisoning attacks are recognized as a top concern in the industry [1]. We focus on conventional indiscriminate data poisoning attacks, where an adversary injects a few crafted examples into the training data with the goal of increasing the test error of the induced model. Despite recent advances, indiscriminate poisoning attacks on large neural networks remain challenging [2]. In this work (to be presented at NeurIPS 2023), we revisit the vulnerabilities of more extensively studied linear models under indiscriminate poisoning attacks.

Read More…

Congratulations, Dr. Zhang!

Congratulations to Xiao Zhang for successfully defending his PhD thesis!

Dr. Zhang and his PhD committee: Somesh Jha (University of Wisconsin), David Evans, Tom Fletcher; Tianxi Li (UVA Statistics), David Wu (UT Austin), Mohammad Mahmoody; Xiao Zhang.

Xiao will join the CISPA Helmholtz Center for Information Security in Saarbrücken, Germany this fall as a tenure-track faculty member.

From Characterizing Intrinsic Robustness to Adversarially Robust Machine Learning

The prevalence of adversarial examples raises questions about the reliability of machine learning systems, especially for their deployment in critical applications. Numerous defense mechanisms have been proposed that aim to improve a machine learning system’s robustness in the presence of adversarial examples. However, none of these methods are able to produce satisfactorily robust models, even for simple classification tasks on benchmarks. In addition to empirical attempts to build robust models, recent studies have identified intrinsic limitations for robust learning against adversarial examples. My research aims to gain a deeper understanding of why machine learning models fail in the presence of adversaries and design ways to build better robust systems. In this dissertation, I develop a concentration estimation framework to characterize the intrinsic limits of robustness for typical classification tasks of interest. The proposed framework leads to the discovery that compared with the concentration of measure which was previously argued to be an important factor, the existence of uncertain inputs may explain more fundamentally the vulnerability of state-of-the-art defenses. Moreover, to further advance our understanding of adversarial examples, I introduce a notion of representation robustness based on mutual information, which is shown to be related to an intrinsic limit of model robustness for downstream classification tasks. Finally in this dissertation, I advocate for a need to rethink the current design goal of robustness and shed light on ways to build better robust machine learning systems, potentially escaping the intrinsic limits of robustness.

Read More…

ICLR 2022: Understanding Intrinsic Robustness Using Label Uncertainty

(Blog post written by Xiao Zhang)

Motivated by the empirical hardness of developing robust classifiers against adversarial perturbations, researchers began asking the question “Does there even exist a robust classifier?”. This is formulated as the intrinsic robustness problem (Mahloujifar et al., 2019), where the goal is to characterize the maximum adversarial robustness possible for a given robust classification problem. Building upon the connection between adversarial robustness and classifier’s error region, it has been shown that if we restrict the search to the set of imperfect classifiers, the intrinsic robustness problem can be reduced to the concentration of measure problem.

Read More…

UVA News Article

UVA News has an article by Audra Book on our research on security and privacy of machine learning (with some very nice quotes from several students in the group, and me saying something positive about the NSA!): Computer science professor David Evans and his team conduct experiments to understand security and privacy risks associated with machine learning, 8 September 2021.

David Evans, professor of computer science in the University of Virginia School of Engineering and Applied Science, is leading research to understand how machine learning models can be compromised.

Read More…

Improved Estimation of Concentration (ICLR 2021)

Our paper on Improved Estimation of Concentration Under ℓp-Norm Distance Metrics Using Half Spaces (Jack Prescott, Xiao Zhang, and David Evans) will be presented at ICLR 2021.

Abstract: Concentration of measure has been argued to be the fundamental cause of adversarial vulnerability. Mahloujifar et al. (2019) presented an empirical way to measure the concentration of a data distribution using samples, and employed it to find lower bounds on intrinsic robustness for several benchmark datasets. However, it remains unclear whether these lower bounds are tight enough to provide a useful approximation for the intrinsic robustness of a dataset. To gain a deeper understanding of the concentration of measure phenomenon, we first extend the Gaussian Isoperimetric Inequality to non-spherical Gaussian measures and arbitrary ℓp-norms (p ≥ 2). We leverage these theoretical insights to design a method that uses half-spaces to estimate the concentration of any empirical dataset under ℓp-norm distance metrics. Our proposed algorithm is more efficient than Mahloujifar et al. (2019)’s, and experiments on synthetic datasets and image benchmarks demonstrate that it is able to find much tighter intrinsic robustness bounds. These tighter estimates provide further evidence that rules out intrinsic dataset concentration as a possible explanation for the adversarial vulnerability of state-of-the-art classifiers.

Read More…

Adversarially Robust Representations

Post by Sicheng Zhu

With the rapid development of deep learning and the explosive growth of unlabeled data, representation learning is becoming increasingly important. It has made impressive applications such as pre-trained language models (e.g., BERT and GPT-3).

Popular as it is, representation learning raises concerns about the robustness of learned representations under adversarial settings. For example, how can we compare the robustness to different representations, and how can we build representations that enable robust downstream classifiers?

Read More…

Intrinsic Robustness using Conditional GANs

The video of Xiao’s presentation for AISTATS 2020 is now available: Understanding the Intrinsic Robustness of Image Distributions using Conditional Generative Models

Starting with Gilmer et al. (2018), several works have demonstrated the inevitability of adversarial examples based on different assumptions about the underlying input probability space. It remains unclear, however, whether these results apply to natural image distributions. In this work, we assume the underlying data distribution is captured by some conditional generative model, and prove intrinsic robustness bounds for a general class of classifiers, which solves an open problem in Fawzi et al. (2018). Building upon the state-of-the-art conditional generative models, we study the intrinsic robustness of two common image benchmarks under l2 perturbations, and show the existence of a large gap between the robustness limits implied by our theory and the adversarial robustness achieved by current state-of-the-art robust models.

Read More…

NeurIPS 2019

Here's a video of Xiao Zhang's presentation at NeurIPS 2019:
https://slideslive.com/38921718/track-2-session-1 (starting at 26:50)

See this post for info on the paper.

Here are a few pictures from NeurIPS 2019 (by Sicheng Zhu and Mohammad Mahmoody):






NeurIPS 2019: Empirically Measuring Concentration

Xiao Zhang will present our work (with Saeed Mahloujifar and Mohamood Mahmoody) as a spotlight at NeurIPS 2019, Vancouver, 10 December 2019.

Recent theoretical results, starting with Gilmer et al.’s Adversarial Spheres (2018), show that if inputs are drawn from a concentrated metric probability space, then adversarial examples with small perturbation are inevitable.c The key insight from this line of research is that concentration of measure gives lower bound on adversarial risk for a large collection of classifiers (e.g. imperfect classifiers with risk at least $\alpha$), which further implies the impossibility results for robust learning against adversarial examples.

Read More…

Research Symposium Posters

Five students from our group presented posters at the department’s Fall Research Symposium:


Anshuman Suri's Overview Talk

Bargav Jayaraman, Evaluating Differentially Private Machine Learning In Practice [Poster]
[Paper (USENIX Security 2019)]




Hannah Chen [Poster]




Xiao Zhang [Poster]
[
Paper (NeurIPS 2019)]




Mainudding Jonas [Poster]




Fnu Suya [Poster]
[
Paper (USENIX Security 2020)]
All Posts by Category or Tags.