Intrinsic Robustness using Conditional GANs

The video of Xiao’s presentation for AISTATS 2020 is now available: Understanding the Intrinsic Robustness of Image Distributions using Conditional Generative Models

Starting with Gilmer et al. (2018), several works have demonstrated the inevitability of adversarial examples based on different assumptions about the underlying input probability space. It remains unclear, however, whether these results apply to natural image distributions. In this work, we assume the underlying data distribution is captured by some conditional generative model, and prove intrinsic robustness bounds for a general class of classifiers, which solves an open problem in Fawzi et al. (2018). Building upon the state-of-the-art conditional generative models, we study the intrinsic robustness of two common image benchmarks under l2 perturbations, and show the existence of a large gap between the robustness limits implied by our theory and the adversarial robustness achieved by current state-of-the-art robust models.

Read More…

Hybrid Batch Attacks at USENIX Security 2020

Here’s the video for Suya’s presentation on Hybrid Batch Attacks at USENIX Security 2020:


Download Video [mp4]

Blog Post
Paper: [PDF] [arXiv]

NeurIPS 2019

Here's a video of Xiao Zhang's presentation at NeurIPS 2019:
https://slideslive.com/38921718/track-2-session-1 (starting at 26:50)

See this post for info on the paper.

Here are a few pictures from NeurIPS 2019 (by Sicheng Zhu and Mohammad Mahmoody):






USENIX Security 2020: Hybrid Batch Attacks

New: Video Presentation

Finding Black-box Adversarial Examples with Limited Queries

Black-box attacks generate adversarial examples (AEs) against deep neural networks with only API access to the victim model.

Existing black-box attacks can be grouped into two main categories: