Xiao Zhang and Saeed Mahloujifar will present our work on Empirically Measuring Concentration: Fundamental Limits on Intrinsic Robustness at two workshops May 6 at ICLR 2019 in New Orleans: Debugging Machine Learning Models and Safe Machine Learning:
Specification, Robustness and Assurance.
Paper: [PDF]
I had the privilege of speaking at the JASON Spring Meeting, undoubtably one of the most diverse meetings I’ve been part of with talks on hypersonic signatures (from my DSSG 2008-2009 colleague, Ian Boyd), FBI DNA, nuclear proliferation in Iran, engineering biological materials, and the 2020 census (including a very interesting presentatino from John Abowd on the differential privacy mechanisms they have developed and evaluated). (Unfortunately, my lack of security clearance kept me out of the SCIF used for the talks on quantum computing and more sensitive topics).
Read More…
Congratulations to Weilin Xu for successfully defending his PhD Thesis!
Weilin's Committee: Homa Alemzadeh, Yanjun Qi, Patrick McDaniel (on screen), David Evans, Vicente Ordóñez Román Improving Robustness of Machine Learning Models using Domain Knowledge Although machine learning techniques have achieved great success in many areas, such as computer vision, natural language processing, and computer security, recent studies have shown that they are not robust under attack. A motivated adversary is often able to craft input samples that force a machine learning model to produce incorrect predictions, even if the target model achieves high accuracy on normal test inputs.
Read More…
New Electronics has an article that includes my Deep Learning and Security Workshop talk: Deep fools, 21 January 2019.
A better version of the image Mainuddin Jonas produced that they use
(which they screenshot from the talk video) is below:
Xiao Zhang and my paper on Cost-Sensitive Robustness against Adversarial Examples has been accepted to ICLR 2019.
Several recent works have developed methods for training classifiers that are certifiably robust against norm-bounded adversarial perturbations. However, these methods assume that all the adversarial transformations provide equal value for adversaries, which is seldom the case in real-world applications. We advocate for cost-sensitive robustness as the criteria for measuring the classifier’s performance for specific tasks.
Read More…
I gave the Booz Allen Hamilton Distinguished Colloquium at the University of Maryland on Can Machine Learning Ever Be Trustworthy?.
[Video](https://vid.umd.edu/detsmediasite/Play/e8009558850944bfb2cac477f8d741711d?catalog=74740199-303c-49a2-9025-2dee0a195650) · [SpeakerDeck](https://speakerdeck.com/evansuva/can-machine-learning-ever-be-trustworthy) Abstract Machine learning has produced extraordinary results over the past few years, and machine learning systems are rapidly being deployed for critical tasks, even in adversarial environments. This talk will survey some of the reasons building trustworthy machine learning systems is inherently impossible, and dive into some recent research on adversarial examples.
Read More…
The National Science Foundation announced the Center for Trustworthy Machine Learning today, a new five-year SaTC Frontier Center “to develop a rigorous understanding of the security risks of the use of machine learning and to devise the tools, metrics and methods to manage and mitigate security vulnerabilities.”
The Center is lead by Patrick McDaniel at Penn State University, and in addition to our group, includes Dan Boneh and Percy Liang (Stanford University), Kamalika Chaudhuri (University of California San Diego), Somesh Jha (University of Wisconsin) and Dawn Song (University of California Berkeley).
Read More…
Engineering and Technology Magazine (a publication of the British [Institution of Engineering and Technology]() has an article that highlights adversarial machine learning research: Artificial intelligence: the new ghost in the machine, 10 October 2018, by Chris Edwards.
Although researchers such as David Evans of the University of Virginia see a full explanation being a little way off in the future, the massive number of parameters encoded by DNNs and the avoidance of overtraining due to SGD may have an answer to why the networks can hallucinate images and, as a result, see things that are not there and ignore those that are.
Read More…
Three SRG posters were presented at USENIX Security Symposium 2018 in Baltimore, Maryland:
Nathaniel Grevatt (GDPR-Compliant Data Processing: Improving Pseudonymization with Multi-Party Computation) Matthew Wallace and Parvesh Samayamanthula (Deceiving Privacy Policy Classifiers with Adversarial Examples) Guy Verrier (How is GDPR Affecting Privacy Policies?, joint with Haonan Chen and Yuan Tian) There were also a surprising number of appearances by an unidentified unicorn:
Your poster may have made the cut for the #usesec18 Poster Reception, but has it received the approval of a tiny, adorable unicorn?
Read More…
I gave a keynote talk at USENIX Workshop of Offensive Technologies, Baltimore, Maryland, 13 August 2018. The title and abstract are what I provided for the WOOT program, but unfortunately (or maybe fortunately for humanity!) I wasn’t able to actually figure out a talk to match the title and abstract I provided.
The history of security includes a long series of arms races, where a new technology emerges and is subsequently developed and exploited by both defenders and attackers.
Read More…