Pointwise Paraphrase Appraisal is Potentially Problematic

Hannah Chen presented her paper on Pointwise Paraphrase Appraisal is Potentially Problematic at the ACL 2020 Student Research Workshop: The prevailing approach for training and evaluating paraphrase identification models is constructed as a binary classification problem: the model is given a pair of sentences, and is judged by how accurately it classifies pairs as either paraphrases or non-paraphrases. This pointwise-based evaluation method does not match well the objective of most real world applications, so the goal of our work is to understand how models which perform well under pointwise evaluation may fail in practice and find better methods for evaluating paraphrase identification models.


Research Symposium Posters

Five students from our group presented posters at the department’s Fall Research Symposium:

Anshuman Suri's Overview Talk

Bargav Jayaraman, Evaluating Differentially Private Machine Learning In Practice [Poster]
[Paper (USENIX Security 2019)]

Hannah Chen [Poster]

Xiao Zhang [Poster]
Paper (NeurIPS 2019)]

Mainudding Jonas [Poster]

Fnu Suya [Poster]
Paper (USENIX Security 2020)]
All Posts by Category or Tags.