Adjectives Can Reveal Gender Biases Within NLP Models

Post by Jason Briegel and Hannah Chen Because NLP models are trained with human corpora (and now, increasingly on text generated by other NLP models that were originally trained on human language), they are prone to inheriting common human stereotypes and biases. This is problematic, because with their growing prominence they may further propagate these stereotypes (Sun et al., 2019). For example, interest is growing in mitigating bias in the field of machine translation, where systems such as Google translate were observed to default to translating gender-neutral pronouns as male pronouns, even with feminine cues (Savoldi et al.

Read More…

Balancing Tradeoffs between Fickleness and Obstinacy in NLP Models

Post by Hannah Chen. Our work on balanced adversarial training looks at how to train models that are robust to two different types of adversarial examples: Hannah Chen, Yangfeng Ji, David Evans. Balanced Adversarial Training: Balancing Tradeoffs between Fickleness and Obstinacy in NLP Models. In The 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP), Abu Dhabi, 7-11 December 2022. [ArXiv] Adversarial Examples At the broadest level, an adversarial example is an input crafted intentionally to confuse a model.

Read More…

Pointwise Paraphrase Appraisal is Potentially Problematic

Hannah Chen presented her paper on Pointwise Paraphrase Appraisal is Potentially Problematic at the ACL 2020 Student Research Workshop: The prevailing approach for training and evaluating paraphrase identification models is constructed as a binary classification problem: the model is given a pair of sentences, and is judged by how accurately it classifies pairs as either paraphrases or non-paraphrases. This pointwise-based evaluation method does not match well the objective of most real world applications, so the goal of our work is to understand how models which perform well under pointwise evaluation may fail in practice and find better methods for evaluating paraphrase identification models.

Read More…

Research Symposium Posters

Five students from our group presented posters at the department’s Fall Research Symposium:

Anshuman Suri's Overview Talk

Bargav Jayaraman, Evaluating Differentially Private Machine Learning In Practice [Poster]
[Paper (USENIX Security 2019)]

Hannah Chen [Poster]

Xiao Zhang [Poster]
Paper (NeurIPS 2019)]

Mainudding Jonas [Poster]

Fnu Suya [Poster]
Paper (USENIX Security 2020)]
All Posts by Category or Tags.