FOSAD Trustworthy Machine Learning Mini-Course

I taught a mini-course on Trustworthy Machine Learning at the 19th International School on Foundations of Security Analysis and Design in Bertinoro, Italy. Slides from my three (two-hour) lectures are posted below, along with some links to relevant papers and resources. Class 1: Introduction/Attacks The PDF malware evasion attack is described in this paper: Weilin Xu, Yanjun Qi, and David Evans. Automatically Evading Classifiers: A Case Study on PDF Malware Classifiers.

Read More…

Google Security and Privacy Workshop

I presented a short talk at a workshop at Google on Adversarial ML: Closing Gaps between Theory and Practice (mostly fun for the movie of me trying to solve Google’s CAPTCHA on the last slide): Getting the actual screencast to fit into the limited time for this talk challenged the limits of my video editing skills. I can say with some confidence, Google does donuts much better than they do cookies!

Read More…

Brink Essay: AI Systems Are Complex and Fragile. Here Are Four Key Risks to Understand.

Brink News (a publication of The Atlantic) published my essay on the risks of deploying AI systems. Artificial intelligence technologies have the potential to transform society in positive and powerful ways. Recent studies have shown computing systems that can outperform humans at numerous once-challenging tasks, ranging from performing medical diagnoses and reviewing legal contracts to playing Go and recognizing human emotions. Despite these successes, AI systems are fundamentally fragile — and the ways they can fail are poorly understood.

Read More…

Cost-Sensitive Adversarial Robustness at ICLR 2019

Xiao Zhang will present Cost-Sensitive Robustness against Adversarial Examples on May 7 (4:30-6:30pm) at ICLR 2019 in New Orleans.

Paper: [PDF] [OpenReview] [ArXiv]

Empirically Measuring Concentration

Xiao Zhang and Saeed Mahloujifar will present our work on Empirically Measuring Concentration: Fundamental Limits on Intrinsic Robustness at two workshops May 6 at ICLR 2019 in New Orleans: Debugging Machine Learning Models and Safe Machine Learning: Specification, Robustness and Assurance.

Paper: [PDF]

JASON Spring Meeting: Adversarial Machine Learning

I had the privilege of speaking at the JASON Spring Meeting, undoubtably one of the most diverse meetings I’ve been part of with talks on hypersonic signatures (from my DSSG 2008-2009 colleague, Ian Boyd), FBI DNA, nuclear proliferation in Iran, engineering biological materials, and the 2020 census (including a very interesting presentatino from John Abowd on the differential privacy mechanisms they have developed and evaluated). (Unfortunately, my lack of security clearance kept me out of the SCIF used for the talks on quantum computing and more sensitive topics).

Read More…

Congratulations Dr. Xu!

Congratulations to Weilin Xu for successfully defending his PhD Thesis! Weilin's Committee: Homa Alemzadeh, Yanjun Qi, Patrick McDaniel (on screen), David Evans, Vicente Ordóñez Román Improving Robustness of Machine Learning Models using Domain Knowledge Although machine learning techniques have achieved great success in many areas, such as computer vision, natural language processing, and computer security, recent studies have shown that they are not robust under attack.

Read More…

Deep Fools

New Electronics has an article that includes my Deep Learning and Security Workshop talk: Deep fools, 21 January 2019.

A better version of the image Mainuddin Jonas produced that they use (which they screenshot from the talk video) is below:

ICLR 2019: Cost-Sensitive Robustness against Adversarial Examples

Xiao Zhang and my paper on Cost-Sensitive Robustness against Adversarial Examples has been accepted to ICLR 2019. Several recent works have developed methods for training classifiers that are certifiably robust against norm-bounded adversarial perturbations. However, these methods assume that all the adversarial transformations provide equal value for adversaries, which is seldom the case in real-world applications. We advocate for cost-sensitive robustness as the criteria for measuring the classifier’s performance for specific tasks.

Read More…

Can Machine Learning Ever Be Trustworthy?

I gave the Booz Allen Hamilton Distinguished Colloquium at the University of Maryland on Can Machine Learning Ever Be Trustworthy?. [Video]( · [SpeakerDeck]( Abstract Machine learning has produced extraordinary results over the past few years, and machine learning systems are rapidly being deployed for critical tasks, even in adversarial environments. This talk will survey some of the reasons building trustworthy machine learning systems is inherently impossible, and dive into some recent research on adversarial examples.

Read More…