NeurIPS 2023: What Distributions are Robust to Poisoning Attacks?

Post by Fnu Suya

Data poisoning attacks are recognized as a top concern in the industry [1]. We focus on conventional indiscriminate data poisoning attacks, where an adversary injects a few crafted examples into the training data with the goal of increasing the test error of the induced model. Despite recent advances, indiscriminate poisoning attacks on large neural networks remain challenging [2]. In this work (to be presented at NeurIPS 2023), we revisit the vulnerabilities of more extensively studied linear models under indiscriminate poisoning attacks.

Read More…

Adjectives Can Reveal Gender Biases Within NLP Models

Post by Jason Briegel and Hannah Chen

Because NLP models are trained with human corpora (and now, increasingly on text generated by other NLP models that were originally trained on human language), they are prone to inheriting common human stereotypes and biases. This is problematic, because with their growing prominence they may further propagate these stereotypes (Sun et al., 2019). For example, interest is growing in mitigating bias in the field of machine translation, where systems such as Google translate were observed to default to translating gender-neutral pronouns as male pronouns, even with feminine cues (Savoldi et al., 2021).

Read More…

Congratulations, Dr. Suya!

Congratulations to Fnu Suya for successfully defending his PhD thesis!

Suya will join the Unversity of Maryland as a MC2 Postdoctoral Fellow at the Maryland Cybersecurity Center this fall.

On the Limits of Data Poisoning Attacks

Current machine learning models require large amounts of labeled training data, which are often collected from untrusted sources. Models trained on these potentially manipulated data points are prone to data poisoning attacks. My research aims to gain a deeper understanding on the limits of two types of data poisoning attacks: indiscriminate poisoning attacks, where the attacker aims to increase the test error on the entire dataset; and subpopulation poisoning attacks, where the attacker aims to increase the test error on a defined subset of the distribution. We first present an empirical poisoning attack that encodes the attack objectives into target models and then generates poisoning points that induce the target models (and hence the encoded objectives) with provable convergence. This attack achieves state-of-the-art performance for a diverse set of attack objectives and quantifies a lower bound to the performance of best possible poisoning attacks. In the broader sense, because the attack guarantees convergence to the target model which encodes the desired attack objective, our attack can also be applied to objectives related to other trustworthy aspects (e.g., privacy, fairness) of machine learning.

Read More…

SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine Learning

Our paper on the use of cryptographic-style games to model inference privacy is published in IEEE Symposium on Security and Privacy (Oakland):

Giovanni Cherubin, , Boris Köpf, Andrew Paverd, Anshuman Suri, Shruti Tople, and Santiago Zanella-Béguelin. SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine Learning. IEEE Symposium on Security and Privacy, 2023. [Arxiv]