The Mismeasure of Man and Models

Evaluating Allocational Harms in Large Language Models Blog post written by Hannah Chen Our work considers allocational harms that arise when model predictions are used to distribute scarce resources or opportunities. Current Bias Metrics Do Not Reliably Reflect Allocation Disparities Several methods have been proposed to audit large language models (LLMs) for bias when used in critical decision-making, such as resume screening for hiring. Yet, these methods focus on predictions, without considering how the predictions are used to make decisions.

Read More…

Google's Trail of Crumbs

Matt Stoller published my essay on Google’s decision to abandon its Privacy Sandbox Initiative in his Big newsletter:

Google's Trail of Crumbs by Matt Stoller

Google is too big to get rid of cookies. Even when it wants to protect users, it can't.

Read on Substack

For more technical background on this, see Minjun’s paper: Evaluating Google’s Protected Audience Protocol in PETS 2024.

Technology: US authorities survey AI ecosystem through antitrust lens

I’m quoted in this article for the International Bar Association: Technology: US authorities survey AI ecosystem through antitrust lens William Roberts, IBA US Correspondent Friday 2 August 2024 Antitrust authorities in the US are targeting the new frontier of artificial intelligence (AI) for potential enforcement action. … Jonathan Kanter, Assistant Attorney General for the Antitrust Division of the DoJ, warns that the government sees ‘structures and trends in AI that should give us pause’.

Read More…

John Guttag Birthday Celebration

Maggie Makar organized a celebration for the 75th birthday of my PhD advisor, John Guttag.

I wasn’t able to attend in person, unfortunately, but the occasion provided an opportunity to create a poster that looks back on what I’ve done since I started working with John over 30 years ago.

SaTML Talk: SoK: Pitfalls in Evaluating Black-Box Attacks

Anshuman Suri’s talk at IEEE Conference on Secure and Trustworthy Machine Learning (SaTML) is now available:

See the earlier blog post for more on the work, and the paper at https://arxiv.org/abs/2310.17534.

SoK: Pitfalls in Evaluating Black-Box Attacks

Post by Anshuman Suri and Fnu Suya Much research has studied black-box attacks on image classifiers, where adversaries generate adversarial examples against unknown target models without having access to their internal information. Our analysis of over 164 attacks (published in 102 major security, machine learning and security conferences) shows how these works make different assumptions about the adversary’s knowledge. The current literature lacks cohesive organization centered around the threat model. Our SoK paper (to appear at IEEE SaTML 2024) introduces a taxonomy for systematizing these attacks and demonstrates the importance of careful evaluations that consider adversary resources and threat models.

Read More…

Model-Targeted Poisoning Attacks with Provable Convergence

(Post by Sean Miller, using images adapted from Suya’s talk slides) Data Poisoning Attacks Machine learning models are often trained using data from untrusted sources, leaving them open to poisoning attacks where adversaries use their control over a small fraction of that training data to poison the model in a particular way. Most work on poisoning attacks is directly driven by an attacker’s objective, where the adversary chooses poisoning points that maximize some target objective.

Read More…

All Posts by Category or Tags.