The Mismeasure of Man and Models

Evaluating Allocational Harms in Large Language Models Blog post written by Hannah Chen Our work considers allocational harms that arise when model predictions are used to distribute scarce resources or opportunities. Current Bias Metrics Do Not Reliably Reflect Allocation Disparities Several methods have been proposed to audit large language models (LLMs) for bias when used in critical decision-making, such as resume screening for hiring. Yet, these methods focus on predictions, without considering how the predictions are used to make decisions.

Read More…

SaTML Talk: SoK: Pitfalls in Evaluating Black-Box Attacks

Anshuman Suri’s talk at IEEE Conference on Secure and Trustworthy Machine Learning (SaTML) is now available:

See the earlier blog post for more on the work, and the paper at https://arxiv.org/abs/2310.17534.

Do Membership Inference Attacks Work on Large Language Models?

MIMIR logo. Image credit: GPT-4 + DALL-E Paper Code Data Membership inference attacks (MIAs) attempt to predict whether a particular datapoint is a member of a target model’s training data. Despite extensive research on traditional machine learning models, there has been limited work studying MIA on the pre-training data of large language models (LLMs). We perform a large-scale evaluation of MIAs over a suite of language models (LMs) trained on the Pile, ranging from 160M to 12B parameters.

Read More…

SoK: Pitfalls in Evaluating Black-Box Attacks

Post by Anshuman Suri and Fnu Suya Much research has studied black-box attacks on image classifiers, where adversaries generate adversarial examples against unknown target models without having access to their internal information. Our analysis of over 164 attacks (published in 102 major security, machine learning and security conferences) shows how these works make different assumptions about the adversary’s knowledge. The current literature lacks cohesive organization centered around the threat model. Our SoK paper (to appear at IEEE SaTML 2024) introduces a taxonomy for systematizing these attacks and demonstrates the importance of careful evaluations that consider adversary resources and threat models.

Read More…

NeurIPS 2023: What Distributions are Robust to Poisoning Attacks?

Post by Fnu Suya Data poisoning attacks are recognized as a top concern in the industry [1]. We focus on conventional indiscriminate data poisoning attacks, where an adversary injects a few crafted examples into the training data with the goal of increasing the test error of the induced model. Despite recent advances, indiscriminate poisoning attacks on large neural networks remain challenging [2]. In this work (to be presented at NeurIPS 2023), we revisit the vulnerabilities of more extensively studied linear models under indiscriminate poisoning attacks.

Read More…

SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine Learning

Our paper on the use of cryptographic-style games to model inference privacy is published in IEEE Symposium on Security and Privacy (Oakland):

Giovanni Cherubin, , Boris Köpf, Andrew Paverd, Anshuman Suri, Shruti Tople, and Santiago Zanella-Béguelin. SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine Learning. IEEE Symposium on Security and Privacy, 2023. [Arxiv]

CVPR 2023: Manipulating Transfer Learning for Property Inference

Manipulating Transfer Learning for Property Inference Transfer learning is a popular method to train deep learning models efficiently. By reusing parameters from upstream pre-trained models, the downstream trainer can use fewer computing resources to train downstream models, compared to training models from scratch. The figure below shows the typical process of transfer learning for vision tasks: However, the nature of transfer learning can be exploited by a malicious upstream trainer, leading to severe risks to the downstream trainer.

Read More…

Attribute Inference attacks are really Imputation

Post by Bargav Jayaraman Attribute inference attacks have been shown by prior works to pose privacy threat against ML models. However, these works assume the knowledge of the training distribution and we show that in such cases these attacks do no better than a data imputataion attack that does not have access to the model. We explore the attribute inference risks in the cases where the adversary has limited or no prior knowledge of the training distribution and show that our white-box attribute inference attack (that uses neuron activations to infer the unknown sensitive attribute) surpasses imputation in these data constrained cases.

Read More…

All Posts by Category or Tags.