Adversarially Robust Representations

Post by Sicheng Zhu With the rapid development of deep learning and the explosive growth of unlabeled data, representation learning is becoming increasingly important. It has made impressive applications such as pre-trained language models (e.g., BERT and GPT-3). Popular as it is, representation learning raises concerns about the robustness of learned representations under adversarial settings. For example, how can we compare the robustness to different representations, and how can we build representations that enable robust downstream classifiers?

Read More…

Intrinsic Robustness using Conditional GANs

The video of Xiao’s presentation for AISTATS 2020 is now available: Understanding the Intrinsic Robustness of Image Distributions using Conditional Generative Models Starting with Gilmer et al. (2018), several works have demonstrated the inevitability of adversarial examples based on different assumptions about the underlying input probability space. It remains unclear, however, whether these results apply to natural image distributions. In this work, we assume the underlying data distribution is captured by some conditional generative model, and prove intrinsic robustness bounds for a general class of classifiers, which solves an open problem in Fawzi et al.

Read More…

NeurIPS 2019

Here's a video of Xiao Zhang's presentation at NeurIPS 2019: (starting at 26:50)

See this post for info on the paper.

Here are a few pictures from NeurIPS 2019 (by Sicheng Zhu and Mohammad Mahmoody):

NeurIPS 2019: Empirically Measuring Concentration

Xiao Zhang will present our work (with Saeed Mahloujifar and Mohamood Mahmoody) as a spotlight at NeurIPS 2019, Vancouver, 10 December 2019. Recent theoretical results, starting with Gilmer et al.‘s Adversarial Spheres (2018), show that if inputs are drawn from a concentrated metric probability space, then adversarial examples with small perturbation are inevitable.c The key insight from this line of research is that concentration of measure gives lower bound on adversarial risk for a large collection of classifiers (e.

Read More…

Research Symposium Posters

Five students from our group presented posters at the department’s Fall Research Symposium:

Anshuman Suri's Overview Talk

Bargav Jayaraman, Evaluating Differentially Private Machine Learning In Practice [Poster]
[Paper (USENIX Security 2019)]

Hannah Chen [Poster]

Xiao Zhang [Poster]
Paper (NeurIPS 2019)]

Mainudding Jonas [Poster]

Fnu Suya [Poster]
Paper (USENIX Security 2020)]

Cost-Sensitive Adversarial Robustness at ICLR 2019

Xiao Zhang will present Cost-Sensitive Robustness against Adversarial Examples on May 7 (4:30-6:30pm) at ICLR 2019 in New Orleans.

Paper: [PDF] [OpenReview] [ArXiv]

Empirically Measuring Concentration

Xiao Zhang and Saeed Mahloujifar will present our work on Empirically Measuring Concentration: Fundamental Limits on Intrinsic Robustness at two workshops May 6 at ICLR 2019 in New Orleans: Debugging Machine Learning Models and Safe Machine Learning: Specification, Robustness and Assurance.

Paper: [PDF]

ICLR 2019: Cost-Sensitive Robustness against Adversarial Examples

Xiao Zhang and my paper on Cost-Sensitive Robustness against Adversarial Examples has been accepted to ICLR 2019. Several recent works have developed methods for training classifiers that are certifiably robust against norm-bounded adversarial perturbations. However, these methods assume that all the adversarial transformations provide equal value for adversaries, which is seldom the case in real-world applications. We advocate for cost-sensitive robustness as the criteria for measuring the classifier’s performance for specific tasks.

Read More…

All Posts by Category or Tags.