Dissecting Distribution Inference

(Cross-post by Anshuman Suri)

Distribution inference attacks aims to infer statistical properties of data used to train machine learning models. These attacks are sometimes surprisingly potent, as we demonstrated in previous work.

KL Divergence Attack

Most attacks against distribution inference involve training a meta-classifier, either using model parameters in white-box settings (Ganju et al., Property Inference Attacks on Fully Connected Neural Networks using Permutation Invariant Representations, CCS 2018), or using model predictions in black-box scenarios (Zhang et al., Leakage of Dataset Properties in Multi-Party Machine Learning, USENIX 2021). While other black-box were proposed in our prior work, they are not as accurate as meta-classifier-based methods, and require training shadow models nonetheless (Suri and Evans, Formalizing and Estimating Distribution Inference Risks, PETS 2022).

Read More…

On the Risks of Distribution Inference

(Cross-post by Anshuman Suri)

Inference attacks seek to infer sensitive information about the training process of a revealed machine-learned model, most often about the training data.

Standard inference attacks (which we call “dataset inference attacks”) aim to learn something about a particular record that may have been in that training data. For example, in a membership inference attack (Reza Shokri et al., Membership Inference Attacks Against Machine Learning Models, IEEE S&P 2017), the adversary aims to infer whether or not a particular record was included in the training data.

Read More…

Oakland Test-of-Time Awards

I chaired the committee to select Test-of-Time Awards for the IEEE Symposium on Security and Privacy symposia from 1995-2006, which were presented at the Opening Section of the 41st IEEE Symposium on Security and Privacy.

NeurIPS 2019

Here's a video of Xiao Zhang's presentation at NeurIPS 2019:
https://slideslive.com/38921718/track-2-session-1 (starting at 26:50)

See this post for info on the paper.

Here are a few pictures from NeurIPS 2019 (by Sicheng Zhu and Mohammad Mahmoody):






White House Visit

I had a chance to visit the White House for a Roundtable on Accelerating Responsible Sharing of Federal Data. The meeting was held under “Chatham House Rules”, so I won’t mention the other participants here.

The meeting was held in the Roosevelt Room of the White House. We entered through the visitor’s side entrance. After a security gate (where you put your phone in a lockbox, so no pictures inside) with a TV blaring Fox News, there is a pleasant lobby for waiting, and then an entrance right into the Roosevelt Room. (We didn’t get to see the entrance in the opposite corner of the room, which is just a hallway across from the Oval Office.)

Read More…

Research Symposium Posters

Five students from our group presented posters at the department’s Fall Research Symposium:


Anshuman Suri's Overview Talk

Bargav Jayaraman, Evaluating Differentially Private Machine Learning In Practice [Poster]
[Paper (USENIX Security 2019)]




Hannah Chen [Poster]




Xiao Zhang [Poster]
[
Paper (NeurIPS 2019)]




Mainudding Jonas [Poster]




Fnu Suya [Poster]
[
Paper (USENIX Security 2020)]

Evaluating Differentially Private Machine Learning in Practice

(Cross-post by Bargav Jayaraman)

With the recent advances in composition of differential private mechanisms, the research community has been able to achieve meaningful deep learning with privacy budgets in single digits. Rènyi differential privacy (RDP) is one mechanism that provides tighter composition which is widely used because of its implementation in TensorFlow Privacy (recently, Gaussian differential privacy (GDP) has shown a tighter analysis for low privacy budgets, but it was not yet available when we did this work). But the central question that remains to be answered is: how private are these methods in practice?

Read More…

USENIX Security Symposium 2019

Bargav Jayaraman presented our paper on Evaluating Differentially Private Machine Learning in Practice at the 28th USENIX Security Symposium in Santa Clara, California.

Summary by Lea Kissner:

Also, great to see several UVA folks at the conference including: